用pythpn写一个hough变换的图像直线检测代码,不使用opencv库
时间: 2024-05-15 17:17:00 浏览: 105
以下是一个基本的Hough变换图像直线检测代码,使用Python和NumPy库:
```python
import numpy as np
def hough_transform(image, theta_res=1, rho_res=1):
# 计算图像的高度和宽度
height, width = image.shape[:2]
# 计算弧度值的范围
thetas = np.deg2rad(np.arange(-90.0, 90.0, theta_res))
# 计算极径的范围
diag_len = np.ceil(np.sqrt(height**2 + width**2)) # 对角线长度
rhos = np.arange(-diag_len, diag_len + 1, rho_res)
# 创建一个二维数组,保存投票数
accumulator = np.zeros((len(rhos), len(thetas)), dtype=np.uint64)
y_idxs, x_idxs = np.nonzero(image) # 找到非零像素的坐标
for i in range(len(x_idxs)):
x = x_idxs[i]
y = y_idxs[i]
for j in range(len(thetas)):
rho = int((x * np.cos(thetas[j]) + y * np.sin(thetas[j])) + diag_len)
accumulator[rho, j] += 1
return accumulator, thetas, rhos
def find_lines(image, num_lines):
# 进行Hough变换
accumulator, thetas, rhos = hough_transform(image)
# 找到前num_lines个直线
indices = np.argpartition(accumulator.flatten(), -num_lines)[-num_lines:]
indices = np.unravel_index(indices, accumulator.shape)
# 计算直线的极坐标参数
rho = rhos[indices[0]]
theta = thetas[indices[1]]
return rho, theta
# 示例代码
import cv2
# 读取图像并转换为灰度图像
image = cv2.imread('test.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 二值化图像
_, thresh = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
# 查找直线
rho, theta = find_lines(thresh, 5)
# 绘制直线
for i in range(len(rho)):
a = np.cos(theta[i])
b = np.sin(theta[i])
x0 = a * rho[i]
y0 = b * rho[i]
x1 = int(x0 + 1000 * (-b))
y1 = int(y0 + 1000 * (a))
x2 = int(x0 - 1000 * (-b))
y2 = int(y0 - 1000 * (a))
cv2.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2)
# 显示图像
cv2.imshow('image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
这个代码假设输入图像为灰度图像,使用二值化操作得到边缘图像。它使用Hough变换来查找图像中的直线,并绘制这些直线。
阅读全文