写一个将列表长度为3作为输入的AlexNet结合branchynet的代码
时间: 2023-12-14 09:39:17 浏览: 74
以下是一个将列表长度为3作为输入的AlexNet结合branchynet的代码的示例:
```python
import torch
import torch.nn as nn
from branchynet import BranchyNet
class AlexNetWithBranchy(nn.Module):
def __init__(self):
super(AlexNetWithBranchy, self).__init__()
# Define the main AlexNet model
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 192, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, 1000),
)
# Define the branchy network branches
self.branch1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 192, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
self.branch2 = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=7, stride=2, padding=3),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(32, 64, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 96, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(96, 96, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(96, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
self.branch3 = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
# Define the branchy network
self.branchy_net = BranchyNet(self.features, [self.branch1, self.branch2, self.branch3], self.classifier)
def forward(self, x):
# Check that input is a list of length 3
if not isinstance(x, list) or len(x) != 3:
raise ValueError("Input must be a list of length 3")
# Pass input through branchy network
out = self.branchy_net(x)
return out
```
在这个示例中,我们首先定义了主要的AlexNet模型,然后定义了三个分支,每个分支都是一个类似于AlexNet的卷积神经网络。然后,我们使用`BranchyNet`类将这些分支和主要模型组合在一起。最后,我们重写了`forward`方法,以便它可以处理输入列表的长度为3。
请注意,这只是一个示例,您可能需要根据您的具体需求进行修改。
阅读全文