请根据注释补全代码。其中X是一个列表,X的列表元素是以图片为列表元素的列表。最后保存X_process中的内容于一个文件夹中(这个文件夹里可以包含若干个二级文件夹)代码:X_processed = [] detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") for x_list in X: temp_X_processed = [] for x in x_list: # write the code to detect face in the image (x) using dlib facedetection library # write the code to crop the image (x) to keep only the face, resize the cropped image to 150x150 # write the code to convert the image (x) to grayscale # append the converted image into temp_X_processed # append temp_X_processed into X_processed
时间: 2024-04-21 20:22:51 浏览: 175
```python
import dlib
import cv2
import os
X_processed = []
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
for x_list in X:
temp_X_processed = []
for x in x_list:
# detect face in the image (x) using dlib facedetection library
gray = cv2.cvtColor(x, cv2.COLOR_BGR2GRAY)
faces = detector(gray)
# crop the image (x) to keep only the face, resize the cropped image to 150x150
for face in faces:
x, y, w, h = face.left(), face.top(), face.width(), face.height()
cropped_face = cv2.resize(x[y:y+h, x:x+w], (150, 150))
# convert the cropped image to grayscale
gray_cropped_face = cv2.cvtColor(cropped_face, cv2.COLOR_BGR2GRAY)
# append the converted image into temp_X_processed
temp_X_processed.append(gray_cropped_face)
# append temp_X_processed into X_processed
X_processed.append(temp_X_processed)
# save X_processed into a folder
os.makedirs("processed_images", exist_ok=True)
for i, x_list in enumerate(X_processed):
for j, x in enumerate(x_list):
filename = f"processed_images/image_{i}_{j}.jpg"
cv2.imwrite(filename, x)
```
阅读全文