def Bottlenecktransformer
时间: 2023-11-17 21:03:39 浏览: 136
BoTNet(Bottleneck Transformer Network)是一种基于Transformer的新骨干架构,它同时使用卷积和自注意力机制。在ResNet的最后3个bottleneck blocks中使用全局多头自注意力(Multi-Head Self-Attention, MHSA)替换3 × 3空间卷积。这种结构可以在保持高精度的同时,大大减少模型的计算量和参数数量。BoTNet已经在多个计算机视觉任务中取得了优异的表现,例如图像分类、目标检测和语义分割等。
```python
import torch
import torch.nn as nn
class MHSA(nn.Module):
def __init__(self, dim, num_heads):
super(MHSA, self).__init__()
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
self.query = nn.Linear(dim, dim, bias=False)
self.key = nn.Linear(dim, dim, bias=False)
self.value = nn.Linear(dim, dim, bias=False)
self.out = nn.Linear(dim, dim)
def forward(self, x):
b, n, _, h = *x.shape, self.num_heads
qkv = [l(x).reshape(b, n, h, self.head_dim).transpose(1, 2) for l, x in zip((self.query, self.key, self.value), (x, x, x))]
dots = qkv[0] @ qkv[1].transpose(-2, -1) * self.scale
attn = dots.softmax(dim=-1)
out = attn @ qkv[2]
out = out.transpose(1, 2).reshape(b, n, -1)
return self.out(out)
class Bottleneck(nn.Module):
def __init__(self, dim, num_heads, expansion_factor=4):
super(Bottleneck, self).__init__()
self.mhsa = MHSA(dim, num_heads)
self.norm1 = nn.LayerNorm(dim)
self.mlp = nn.Sequential(
nn.Linear(dim, expansion_factor * dim),
nn.GELU(),
nn.Linear(expansion_factor * dim, dim),
)
self.norm2 = nn.LayerNorm(dim)
def forward(self, x):
x = x + self.mhsa(self.norm1(x))
x = x + self.mlp(self.norm2(x))
return x
class BoTNet(nn.Module):
def __init__(self, layers, channels, num_classes, num_heads=4, expansion_factor=4):
super(BoTNet, self).__init__()
self.stem = nn.Sequential(
nn.Conv2d(3, channels[0], kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(channels[0]),
nn.ReLU(inplace=True),
nn.Conv2d(channels[0], channels[0], kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(channels[0]),
nn.ReLU(inplace=True),
nn.Conv2d(channels[0], channels[0], kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(channels[0]),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
)
self.layer1 = self._make_layer(dim=channels[0], num_heads=num_heads, expansion_factor=expansion_factor, num_blocks=layers[0])
self.layer2 = self._make_layer(dim=channels[1], num_heads=num_heads, expansion_factor=expansion_factor, num_blocks=layers[1], stride=2)
self.layer3 = self._make_layer(dim=channels[2], num_heads=num_heads, expansion_factor=expansion_factor, num_blocks=layers[2], stride=2)
self.layer4 = self._make_layer(dim=channels[3], num_heads=num_heads, expansion_factor=expansion_factor, num_blocks=layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(channels[3], num_classes)
def _make_layer(self, dim, num_heads, expansion_factor, num_blocks, stride=1):
layers = [Bottleneck(dim, num_heads, expansion_factor=expansion_factor)]
for _ in range(num_blocks - 1):
layers.append(Bottleneck(dim, num_heads, expansion_factor=expansion_factor))
return nn.Sequential(*layers)
def forward(self, x):
x = self.stem(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.flatten(1)
x = self.fc(x)
return x
```
阅读全文