resnet50医学图像目标检测
时间: 2023-11-11 15:48:25 浏览: 122
YOLOV5 改进实战项目【更换骨干网络为resnet】:水果检测(5类别)
对于使用resnet50来测试医学图像数据集,您可以按照以下步骤进行操作:
1. 导入所需的库和模块:
```python
import torch
from torchvision import models, transforms
import torch.nn as nn
import cv2
```
2. 定义类别标签和图像转换:
```python
classes = ["光化角质病","基底细胞癌","皮肤纤维瘤","黑素瘤","痣","色素良性病","脂溢性角化病","鳞状细胞癌","血管损害"]
transf = transforms.ToTensor()
```
3. 加载预训练的resnet50模型并设置为不可训练:
```python
resnet50 = models.resnet50(pretrained=True)
for param in resnet50.parameters():
param.requires_grad = False
```
4. 修改resnet50的全连接层部分,并加载已经训练好的模型:
```python
fc_inputs = resnet50.fc.in_features
resnet50.fc = nn.Sequential(
nn.Linear(fc_inputs, 256),
nn.ReLU(),
nn.Dropout(0.4),
nn.Linear(256, len(classes)),
nn.LogSoftmax(dim=1)
)
model_path = "models/data_model_3.pt"
resnet50 = torch.load(model_path)
```
5. 加载待测试的医学图像数据集并进行预测:
```python
image_input = cv2.imread("test_image1.jpg")
image_input = transf(image_input)
image_input = torch.unsqueeze(image_input,dim=
阅读全文