printf("File %s Line %d, RETRIEVE: Failed creating thread",__FILE__,__LINE__);其中__FILE__,__LINE__是什么意思
时间: 2024-01-10 09:21:32 浏览: 73
__FILE__和__LINE__是C语言中的预定义宏,用于在编译时获取当前源文件名和行号。
__FILE__表示当前源文件的文件名,是一个字符串常量。例如,如果你的源文件名是example.c,那么__FILE__将被替换为字符串"example.c"。
__LINE__表示当前代码所在的行号,是一个整数常量。例如,如果你的代码在源文件的第10行,那么__LINE__将被替换为整数10。
在你提供的代码中,printf函数使用了__FILE__和__LINE__来输出错误信息时的文件名和行号。这样可以方便地定位错误发生的位置。
范例:<<引用:printf("File %s Line %d, RETRIEVE: Failed creating thread",__FILE__,__LINE__);。引用:printf("Error in file %s at line %d\n", __FILE__, __LINE__);。
以下是一个示例,演示了如何使用__FILE__和__LINE__宏输出错误信息时的文件名和行号:
```c
#include <stdio.h>
int main() {
printf("Error in file %s at line %d\n", __FILE__, __LINE__);
return 0;
}
```
输出结果为:
Error in file main.c at line 5
相关问题
根据前端传过来的前端传递过来的开始时间和结束时间参数 筛选创建时间在开始时间和结束时间区间的数据 修改后端写法def get_bugs_data(): api_url = "https://api.tapd.cn/bugs" api_headers = {"Authorization": "#", "content-type": "application/json"}iterations_url = "https:/"count_url ="https://at" params_count = {"status": "closed","workspace_id": 41571821, } # 发送请求,获取缺陷总数 response = requests.get(count_url, params=params_count, headers=api_headers) if response.status_code == 200: total_bug = response.json()total_count = total_bug['data']['count'] print(total_count) else: print("Error: Failed to retrieve count. Status code: ", response.status_code) start_time = request.get('start_time') end_time = request.get('end_time') start_time =datetime.strptime(start_time, '%Y-%m-%d %H:%M:%S') end_time = datetime.strptime(end_time, '%Y-%m-%d %H:%M:%S') bug_list = [] for i in range(1,total_count//200): params = {"limit": 200, "status": "closed", "workspace_id": 41571821, "page": i } response = requests.get(api_url, params=params, headers=api_headers) if response.status_code == 200: res = response.json() for bug_item in res['data']: if bug_item['Bug']['fixer'] and bug_item['Bug']['fixer'] in white_name:bug_data_dict = {"bug_title": bug_item['Bug']['title'], "bug_created": bug_item['Bug']['created'], "bug_fixer": bug_item['Bug']['fixer'], "bug_resolved": bug_item['Bug']['resolved'], "bug_url": f"https://www.tapd.cn/41571821/bugtrace/bugs/view?bug_id={bug_item['Bug']['id']}" } params_iteration = {"limit": 200, "workspace_id": 41571821, "id": bug_item['Bug']['iteration_id'] }response =requests.get(iterations_url, params=params_iteration, headers=api_headers)if response.status_code == 200: iterations = response.json() iteration_name = iterations['data'][0]['Iteration']['name'] bug_data_dict['iteration_name'] = iteration_name bug_list.append(bug_data_dict) else: print("Error: Failed to retrieve iterations. Status code: ", response.status_code) return {"code": 200, "msg": "成功", "data": bug_list}
可以将代码中的bug数据筛选部分修改如下:
```python
bug_list = []
for i in range(1, total_count//200 + 2):
params = {"limit": 200, "status": "closed", "workspace_id": 41571821, "page": i}
response = requests.get(api_url, params=params, headers=api_headers)
if response.status_code == 200:
res = response.json()
for bug_item in res['data']:
created_time = datetime.strptime(bug_item['Bug']['created'], '%Y-%m-%d %H:%M:%S')
if start_time <= created_time <= end_time:
if bug_item['Bug']['fixer'] and bug_item['Bug']['fixer'] in white_name:
bug_data_dict = {"bug_title": bug_item['Bug']['title'],
"bug_created": bug_item['Bug']['created'],
"bug_fixer": bug_item['Bug']['fixer'],
"bug_resolved": bug_item['Bug']['resolved'],
"bug_url": f"https://www.tapd.cn/41571821/bugtrace/bugs/view?bug_id={bug_item['Bug']['id']}"}
params_iteration = {"limit": 200, "workspace_id": 41571821, "id": bug_item['Bug']['iteration_id']}
response = requests.get(iterations_url, params=params_iteration, headers=api_headers)
if response.status_code == 200:
iterations = response.json()
iteration_name = iterations['data'][0]['Iteration']['name']
bug_data_dict['iteration_name'] = iteration_name
bug_list.append(bug_data_dict)
else:
print("Error: Failed to retrieve iterations. Status code: ", response.status_code)
else:
print("Error: Failed to retrieve bugs. Status code: ", response.status_code)
return {"code": 200, "msg": "成功", "data": bug_list}
```
在每个缺陷被处理时,将其创建时间转换为datetime对象,然后与开始时间和结束时间进行比较。如果创建时间在时间范围内,则将该缺陷加入到结果列表中。
这段代码为什么会报一下错误,请修改代码 Traceback (most recent call last): File "D:\tokamaka\ExperimentalSet\Python\SVM\DisruptionPredictor\B_train.py", line 159, in <module> fit_svm_model(number_of_batches) File "D:\tokamaka\ExperimentalSet\Python\SVM\DisruptionPredictor\B_train.py", line 126, in fit_svm_model models = Parallel(n_jobs=num_cores, verbose=10)( File "D:\python\lib\site-packages\joblib\parallel.py", line 1098, in __call__ self.retrieve() File "D:\python\lib\site-packages\joblib\parallel.py", line 975, in retrieve self._output.extend(job.get(timeout=self.timeout)) File "D:\python\lib\multiprocessing\pool.py", line 774, in get raise self._value File "D:\python\lib\multiprocessing\pool.py", line 125, in worker result = (True, func(*args, **kwds)) File "D:\python\lib\site-packages\joblib\_parallel_backends.py", line 620, in __call__ return self.func(*args, **kwargs) File "D:\python\lib\site-packages\joblib\parallel.py", line 288, in __call__ return [func(*args, **kwargs) File "D:\python\lib\site-packages\joblib\parallel.py", line 288, in <listcomp> return [func(*args, **kwargs) File "D:\tokamaka\ExperimentalSet\Python\SVM\DisruptionPredictor\B_train.py", line 104, in fit_model
根据您提供的错误信息,问题可能出现在 `fit_model` 函数中的某一处。由于我无法查看您完整的代码,我无法确定确切的问题所在。但是,我可以提供一些常见的错误和建议来帮助您修复问题。
1. 检查变量是否正确初始化:确保在使用变量之前,它们已经正确初始化。如果变量未初始化或为空,可能会导致错误。
2. 检查函数的参数和调用是否匹配:确保函数的参数数量和类型与调用时传递的参数相匹配。如果参数不匹配,可能会导致错误。
3. 检查代码逻辑:仔细检查代码中的逻辑错误或语法错误。确认每一行代码的语法和语义是否正确。
4. 检查依赖项和导入:确认所有需要的依赖项都已正确导入,并且版本兼容。升级或降级某些依赖项可能会导致代码不兼容。
5. 检查并处理异常:在代码中添加适当的异常处理机制,以捕获和处理潜在的异常情况。
请您根据以上提示检查代码,并尝试逐步调试以找到问题所在。如果您需要更具体的帮助,请提供相关代码片段或更多细节,以便我能够更好地帮助您解决问题。
阅读全文