用python求不定积分f(ax**2+b*x+c)dx 和定积分 f01(ax**2+bx+c)dx的解。
时间: 2023-11-19 18:04:30 浏览: 120
python 求定积分和不定积分示例
对于不定积分 $f(ax^2+bx+c)dx$,可以使用换元法:
令 $u = ax^2+bx+c$,则 $du = (2ax+b)dx$,即 $dx = \frac{1}{2a}(du-bdx)$
将 $u$ 和 $dx$ 带入原式得到:
$$
\begin{aligned}
\int f(ax^2+bx+c)dx &= \int f(u)dx \\
&= \int f(u)\frac{1}{2a}(du-bdx) \\
&= \frac{1}{2a}\int (f(u)-bf'(u))du
\end{aligned}
$$
其中 $f'(u)$ 表示 $f(u)$ 的导数。
对于定积分 $\int_{0}^{1} f(ax^2+bx+c)dx$,同样可以使用换元法:
令 $u = ax^2+bx+c$,则 $du = (2ax+b)dx$,即 $dx = \frac{1}{2a}(du-bdx)$
当 $x=0$ 时,$u=c$;当 $x=1$ 时,$u=a+b+c$。将 $u$ 和 $dx$ 带入原式得到:
$$
\begin{aligned}
\int_{0}^{1} f(ax^2+bx+c)dx &= \int_{c}^{a+b+c} f(u)\frac{1}{2a}(du-bdx) \\
&= \frac{1}{2a}\int_{c}^{a+b+c} (f(u)-bf'(u))du
\end{aligned}
$$
注意:这里我们假设 $a \neq 0$,否则在求解不定积分时会出现分母为 $0$ 的情况。
阅读全文