rsa 应用模重复平方 蒙哥马利算法 中国剩余定理C语言代码实现
时间: 2023-07-26 17:15:45 浏览: 169
中国剩余定理的C语言实现
5星 · 资源好评率100%
以下是C语言的代码实现:
1. RSA算法
加密:
```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/rsa.h>
#include <openssl/pem.h>
int main() {
// 生成RSA公私钥
RSA *key = RSA_generate_key(2048, RSA_F4, NULL, NULL);
// 保存公私钥
FILE *f;
f = fopen("private_key.pem", "w");
PEM_write_RSAPrivateKey(f, key, NULL, NULL, 0, NULL, NULL);
fclose(f);
f = fopen("public_key.pem", "w");
PEM_write_RSAPublicKey(f, key);
fclose(f);
// 使用公钥加密
char plaintext[] = "hello world";
size_t plaintext_len = strlen(plaintext);
unsigned char ciphertext[256];
RSA_public_encrypt(plaintext_len, (unsigned char *)plaintext, ciphertext, key, RSA_PKCS1_OAEP_PADDING);
return 0;
}
```
解密:
```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/rsa.h>
#include <openssl/pem.h>
int main() {
// 读取私钥
FILE *f;
f = fopen("private_key.pem", "r");
RSA *key = RSA_new();
key = PEM_read_RSAPrivateKey(f, &key, NULL, NULL);
fclose(f);
// 使用私钥解密
unsigned char plaintext[256];
size_t plaintext_len = RSA_private_decrypt(sizeof(ciphertext), ciphertext, plaintext, key, RSA_PKCS1_OAEP_PADDING);
return 0;
}
```
2. 模重复平方算法
```c
#include <stdio.h>
#include <stdint.h>
uint64_t mod_exp(uint64_t base, uint64_t exponent, uint64_t modulus) {
uint64_t result = 1;
while (exponent > 0) {
if (exponent & 1) {
result = (result * base) % modulus;
}
exponent >>= 1;
base = (base * base) % modulus;
}
return result;
}
```
3. 蒙哥马利算法
```c
#include <stdio.h>
#include <stdint.h>
uint64_t montgomery_reduction(uint64_t x, uint64_t r, uint64_t n, uint64_t n_inv) {
// Step 1
uint64_t m = (x * r) % n;
// Step 2
uint64_t t = (x + m * n) * n_inv % r;
// Step 3
if (t >= r) {
return t - r;
} else {
return t;
}
}
uint64_t mod_exp_montgomery(uint64_t base, uint64_t exponent, uint64_t modulus) {
// Step 1
uint64_t r = 1;
while (r < modulus) {
r <<= 1;
}
// Step 2
uint64_t n_inv = -modulus % r;
// Step 3
base = (base * r) % modulus;
// Step 4
uint64_t x = r % modulus;
while (exponent > 0) {
if (exponent & 1) {
x = montgomery_reduction(x * base, r, modulus, n_inv);
}
base = montgomery_reduction(base * base, r, modulus, n_inv);
exponent >>= 1;
}
// Step 5
return montgomery_reduction(x, r, modulus, n_inv);
}
```
4. 中国剩余定理
```c
#include <stdio.h>
#include <stdint.h>
uint64_t chinese_remainder_theorem(uint64_t *c, uint64_t *n, uint64_t len) {
// Step 1
uint64_t N = 1;
for (int i = 0; i < len; i++) {
N *= n[i];
}
// Step 2
uint64_t x = 0;
for (int i = 0; i < len; i++) {
uint64_t Ni = N / n[i];
uint64_t Mi = mod_exp_montgomery(Ni, n[i] - 2, n[i]);
x += c[i] * Ni * Mi % N;
}
// Step 3
return x % N;
}
```
阅读全文