卷积神经网络中激活函数用来干嘛
时间: 2023-10-30 19:57:37 浏览: 112
卷积神经网络中的激活函数主要用于引入非线性映射,增加网络的非线性拟合能力。在卷积层和全连接层中,由于卷积和矩阵相乘都是线性运算,如果没有激活函数,那么整个神经网络就会变成一个简单的线性模型,这样网络的表达能力会受到很大的限制,无法处理复杂的非线性关系。
激活函数的作用就是将输入信号进行非线性变换,使得网络可以学习到更加复杂的特征和模式。常见的激活函数包括Sigmoid、ReLU、Softmax等,每种激活函数都有其特点和适应场景,选择合适的激活函数可以提高网络的性能和泛化能力。
相关问题
卷积神经网络激活函数
卷积神经网络中的激活函数通常使用ReLU(Rectified Linear Unit)函数。ReLU函数是一个非线性函数,它将所有负值输入映射为零,并保持所有正值不变。这个函数在卷积神经网络中的隐藏层中被广泛使用,因为它可以增加网络的非线性拟合能力,并帮助网络更好地学习和表示复杂的数据特征。ReLU函数在实践中已被证明是一种有效的激活函数,因为它不仅简单而且计算高效。所以在卷积神经网络中,使用ReLU作为隐藏层的激活函数是一个常见的选择。
自定义激活函数替换卷积神经网络激活函数matlab代码
以下是一个示例的自定义激活函数替换卷积神经网络激活函数的 Matlab 代码:
```matlab
% 自定义激活函数
function y = my_activation(x)
y = max(0, x); % ReLU 激活函数
% 可以尝试其他激活函数,例如 sigmoid、tanh 等
end
% 加载数据
load mnist_uint8;
% 转换数据类型
train_x = double(train_x) / 255;
test_x = double(test_x) / 255;
% 调整数据形状
train_x = reshape(train_x, size(train_x, 1), 1, 28, 28);
test_x = reshape(test_x, size(test_x, 1), 1, 28, 28);
% 构建卷积神经网络模型
cnn.layers = {
struct('type', 'i') % 输入层
struct('type', 'c', 'outputmaps', 6, 'kernelsize', 5) % 卷积层
struct('type', 'a', 'activation', @my_activation) % 自定义激活函数层
struct('type', 's', 'scale', 2) % 池化层
struct('type', 'c', 'outputmaps', 12, 'kernelsize', 5) % 卷积层
struct('type', 'a', 'activation', @my_activation) % 自定义激活函数层
struct('type', 's', 'scale', 2) % 池化层
struct('type', 'c', 'outputmaps', 20, 'kernelsize', 5) % 卷积层
struct('type', 'a', 'activation', @my_activation) % 自定义激活函数层
struct('type', 's', 'scale', 2) % 池化层
};
cnn = cnnsetup(cnn, train_x, train_y);
% 训练卷积神经网络模型
opts.alpha = 1;
opts.batchsize = 50;
opts.numepochs = 20;
cnn = cnntrain(cnn, train_x, train_y, opts);
% 测试卷积神经网络模型
[er, bad] = cnntest(cnn, test_x, test_y);
fprintf('Error rate: %f\n', er);
```
在这个示例代码中,我们定义了一个名为 `my_activation` 的自定义激活函数,并将其用作卷积神经网络模型中的激活函数。同时,我们还在卷积神经网络模型的定义中添加了一个新的层,即 `struct('type', 'a', 'activation', @my_activation)`,其中 `@my_activation` 表示使用我们定义的自定义激活函数。然后,我们使用 `cnntrain` 函数训练卷积神经网络模型,并使用 `cnntest` 函数测试模型的性能。
阅读全文