卷积神经网络(CNN)可以引用哪篇参考文献?
时间: 2023-02-14 13:23:51 浏览: 2051
卷积神经网络(CNN)的参考文献是 Yann LeCun, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE, 86(11):2278-2324, 1998.
相关问题
卷积神经网络参考文献
根据科技情报大数据挖掘与服务系统平台AMiner从人工智能领域国际顶会/期刊中提取出的“卷积神经网络”相关关键词,筛选推荐了100篇经典必读论文,内容包含CNN在检测/识别/分类/分割/跟踪等领域的理论与实践,并按被引用量进行了排序整理。此外,最新的卷积神经网络分类研究进展也会经常出现在计算机视觉相关的国际学术会议和期刊上,例如CVPR、ICCV、ECCV等会议和TPAMI、IJCV等期刊。以下是一些卷积神经网络的参考文献:
1. "ImageNet Classification with Deep Convolutional Neural Networks" by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton (2012)
2. "Very Deep Convolutional Networks for Large-Scale Image Recognition" by Karen Simonyan and Andrew Zisserman (2015)
3. "Going Deeper with Convolutions" by Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich (2015)
4. "Rethinking the Inception Architecture for Computer Vision" by Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna (2016)
5. "Deep Residual Learning for Image Recognition" by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016)
6. "Mask R-CNN" by Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick (2017)
7. "YOLOv3: An Incremental Improvement" by Joseph Redmon and Ali Farhadi (2018)
8. "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" by Mingxing Tan and Quoc V. Le (2019)
9. "Vision Transformers" by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby (2020)
10. "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo (2021)
图像分类的特征提取可以参考哪篇文献?
### 回答1:
图像分类特征提取的经典文献有 "ImageNet Classification with Deep Convolutional Neural Networks" (Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, 2012) 和 "Very Deep Convolutional Networks for Large-Scale Image Recognition" (Karen Simonyan and Andrew Zisserman, 2014)。
### 回答2:
图像分类的特征提取在计算机视觉领域有许多经典的文献可供参考。其中一篇广泛引用的文献是加州大学伯克利分校的J. Deng和K. Li等人于2009年发表的《ImageNet:一个大规模的高度多样化的图像数据库》。
这篇文献介绍了ImageNet数据库,该数据库包含了数百万个不同类别的图像样本,涵盖了从动物、植物到日常物品等多个领域。在特征提取方面,该文献介绍了使用深度学习的方法,尤其是使用卷积神经网络(CNN)对图像进行特征提取和分类的优势。
此外,AlexNet是另一篇重要的参考文献。这是由Alex Krizhevsky、Ilya Sutskever和Geoffrey Hinton于2012年发表的《ImageNet分类的深度卷积神经网络》。这篇文献描述了AlexNet,它是一个深度卷积神经网络,通过在大规模图像分类比赛(ImageNet Large-Scale Visual Recognition Challenge)中取得显著的优秀表现,引起了深度学习在图像分类中的广泛关注。
此外,还有许多其他的文献可以进一步了解特征提取的方法,如“Spatial Pyramid Matching”的文献,《Histograms of Oriented Gradients for Human Detection》等。这些文献提供了不同的特征提取方法和算法,可以根据具体情况进行选择和应用。总之,通过研究这些经典文献,我们可以了解到图像分类的特征提取方法的发展和优势,从而为图像分类任务提供参考和指导。
阅读全文