帮我优化一段sql:SELECT SUM(vin) AS vin_sum FROM (SELECT vin FROM hryt_gca_vehicle_audit_defect WHERE TO_CHAR(create_date,'yyyy mm iw') = TO_CHAR(Sysdate, 'yyyy mm iw') GROUP BY VIN ORDER BY dbms_random.value) WHERE rownum <= 10;

时间: 2023-05-24 14:01:49 浏览: 130
很高兴为您服务!这个SQL查询可以优化,您可以通过以下代码实现: SELECT SUM(vin) AS vin_sum FROM ( SELECT vin FROM ( SELECT vin, rownum rn FROM ( SELECT vin FROM hryt_gca_vehicle_audit_defect WHERE TO_CHAR(create_date,'yyyy mm iw') = TO_CHAR(Sysdate, 'yyyy mm iw') GROUP BY VIN ORDER BY dbms_random.value ) ) WHERE rn <= 10 ) 这个优化方案的思路是为内部查询添加行号,并且将ROWNUM筛选条件从外部查询中移除。这样效率更高,能够更快地获取结果。希望这个答案能帮助到您!
相关问题

帮我优化下这个sql : SELECT t4.vin, t3.msg_id AS trip_id, t3.trip_start_time, t4.switch_value AS has_trip FROM ( SELECT * FROM dds.dwd_driving_calendar t1 WHERE t1.vin = 'LSJA24396MS179029' AND 1681745400001 > t1.trip_start_time AND 1681745400001 < t1.trip_end_time ) t3 LEFT JOIN ( SELECT * FROM dds.vehicle_journey_switch_history t2 WHERE t2.vin IN ( 'LSJA24396MS179029' ) ) t4 ON t3.vin = t4.vin AND t4.switch_key = 'vehicle_journey_data' AND '2023-04-17 23:30:00' > t4.create_time AND '2023-04-17 23:30:00' < t4.update_time

可以尝试优化以下几个方面: 1. 使用EXISTS替换LEFT JOIN 可以使用EXISTS来代替LEFT JOIN进行连接查询,因为EXISTS在查询到一条匹配的数据后就会停止,而LEFT JOIN需要查询完整个表再返回结果。 ``` SELECT t3.vin, t3.msg_id AS trip_id, t3.trip_start_time, t4.switch_value AS has_trip FROM dds.dwd_driving_calendar t3 WHERE t3.vin = 'LSJA24396MS179029' AND 1681745400001 > t3.trip_start_time AND 1681745400001 < t3.trip_end_time AND EXISTS ( SELECT 1 FROM dds.vehicle_journey_switch_history t4 WHERE t3.vin = t4.vin AND t4.switch_key = 'vehicle_journey_data' AND '2023-04-17 23:30:00' > t4.create_time AND '2023-04-17 23:30:00' < t4.update_time ) ``` 2. 添加索引 在vin、trip_start_time、trip_end_time、switch_key、create_time和update_time列上添加索引,可以加速查询。 3. 不要使用SELECT * 在子查询中不要使用SELECT *,而是明确指定需要查询的列,可以减少不必要的数据读取和传输,提高查询效率。例如: ``` SELECT vin, msg_id AS trip_id, trip_start_time FROM dds.dwd_driving_calendar WHERE vin = 'LSJA24396MS179029' AND 1681745400001 > trip_start_time AND 1681745400001 < trip_end_time ``` ``` SELECT vin, switch_value FROM dds.vehicle_journey_switch_history WHERE vin IN ('LSJA24396MS179029') AND switch_key = 'vehicle_journey_data' AND '2023-04-17 23:30:00' > create_time AND '2023-04-17 23:30:00' < update_time ```

MySQL优化:select brandName,have_vin_count,(select count(1) from epc_carmodel_skucount where ifnull(vin,'') <> '') as have_vin_sum_count, concat(round(have_vin_count/(select count(1) from epc_carmodel_skucount where ifnull(vin,'') <> '')*100, 2),'%') as have_vin_percent from (select b.brandName,count(distinct a.vehicleUUID) as have_vin_count from (select distinct vehicleUUID from epc_carmodel_skucount where ifnull(vin,'') <> '') a inner join ( select b.brandName,b.vehicleUUID from epc_material_sence_model a join ( select * from epc_bom_sence where brandName not in ('演示','测试','客服内测') and ifnull(brandName,'') <> '' and brandName not like '火星%' and brandName not like '原厂%' ) b on a.oeId=b.oeId where a.categoryName='火花塞' ) b on a.vehicleUUID=b.vehicleUUID group by b.brandName

这段 SQL 语句是查询汽车品牌的火花塞车型中,有 VIN 码的车型数量及占比。其中使用了子查询和连接查询,可能会有性能问题。建议优化如下: 1. 尽量避免在子查询中使用聚合函数,可以将子查询的结果存储到临时表中,以提高查询效率。 2. 将子查询中的 ifnull(vin,'') <> '' 转换为 vin IS NOT NULL AND vin <> '',可以利用索引优化查询。 3. 使用 JOIN 操作时,尽量通过 ON 子句指定连接条件,避免使用 WHERE 子句进行过滤,提高查询效率。 优化后的 SQL 语句如下: ``` SELECT b.brandName, COUNT(DISTINCT a.vehicleUUID) AS have_vin_count, COUNT(DISTINCT c.vehicleUUID) AS have_vin_sum_count, CONCAT(ROUND(COUNT(DISTINCT a.vehicleUUID) / COUNT(DISTINCT c.vehicleUUID) * 100, 2), '%') AS have_vin_percent FROM epc_carmodel_skucount a INNER JOIN ( SELECT b.brandName, b.vehicleUUID FROM epc_material_sence_model a JOIN ( SELECT * FROM epc_bom_sence WHERE brandName NOT IN ('演示', '测试', '客服内测') AND IFNULL(brandName, '') <> '' AND brandName NOT LIKE '火星%' AND brandName NOT LIKE '原厂%' ) b ON a.oeId = b.oeId WHERE a.categoryName = '火花塞' ) b ON a.vehicleUUID = b.vehicleUUID AND a.vin IS NOT NULL AND a.vin <> '' LEFT JOIN epc_carmodel_skucount c ON c.vin IS NOT NULL AND c.vin <> '' GROUP BY b.brandName ``` 这样,可以避免子查询中的聚合函数,使用 INNER JOIN 操作指定连接条件,同时使用 LEFT JOIN 操作获取所有有 VIN 码的车型数量,从而提高查询效率。
阅读全文

相关推荐

大家在看

recommend-type

任务分配基于matlab拍卖算法多无人机多任务分配【含Matlab源码 3086期】.zip

代码下载:完整代码,可直接运行 ;运行版本:2014a或2019b;若运行有问题,可私信博主; **仿真咨询 1 各类智能优化算法改进及应用** 生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化 **2 机器学习和深度学习方面** 卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断 **3 图像处理方面** 图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知 **4 路径规划方面** 旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化 **5 无人机应用方面** 无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配 **6 无线传感器定位及布局方面** 传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化 **7 信号处理方面** 信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化 **8 电力系统方面** 微电网优化、无功优化、配电网重构、储能配置 **9 元胞自动机方面** 交通流 人群疏散 病毒扩散 晶体生长 **10 雷达方面** 卡尔曼滤波跟踪、航迹关联、航迹融合
recommend-type

python大作业基于python实现的心电检测源码+数据+详细注释.zip

python大作业基于python实现的心电检测源码+数据+详细注释.zip 【1】项目代码完整且功能都验证ok,确保稳定可靠运行后才上传。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通,帮助解答。 【2】项目主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 【3】项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 【4】如果基础还行,或热爱钻研,可基于此项目进行二次开发,DIY其他不同功能,欢迎交流学习。 【备注】 项目下载解压后,项目名字和项目路径不要用中文,否则可能会出现解析不了的错误,建议解压重命名为英文名字后再运行!有问题私信沟通,祝顺利! python大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zip python大作业基于python实现的心电检测源码+数据+详细注释.zip
recommend-type

遗传算法改进粒子群算法优化卷积神经网络,莱维飞行改进遗传粒子群算法优化卷积神经网络,lv-ga-pso-cnn网络攻击识别

基于MATLAB编程实现,在莱维飞行改进遗传粒子群算法优化卷积神经网络,既在粒子群改进卷积神经网络的基础上,用遗传算法再改进粒子群,提供粒子群的寻优能力,从而达到寻优更佳卷积神经网络的目的,然后再用莱维飞行改进遗传粒子群算法,进一步提供粒子群的寻优能力,从而找到最佳的卷积神经网络,然后改进的卷积神经网络进行网络攻击类型识别,并输出测试准确率,混淆矩阵等,代码齐全,数据完整,可以直接运行
recommend-type

轮轨接触几何计算程序-Matlab-2024.zip

MATLAB实现轮轨接触几何计算(源代码和数据) 数据输入可替换,输出包括等效锥度、接触点对、滚动圆半径差、接触角差等。 运行环境MATLAB2018b。 MATLAB实现轮轨接触几何计算(源代码和数据) 数据输入可替换,输出包括等效锥度、接触点对、滚动圆半径差、接触角差等。 运行环境MATLAB2018b。 MATLAB实现轮轨接触几何计算(源代码和数据) 数据输入可替换,输出包括等效锥度、接触点对、滚动圆半径差、接触角差等。 运行环境MATLAB2018b。 MATLAB实现轮轨接触几何计算(源代码和数据) 数据输入可替换,输出包括等效锥度、接触点对、滚动圆半径差、接触角差等。 运行环境MATLAB2018b。主程序一键自动运行。 MATLAB实现轮轨接触几何计算(源代码和数据) 数据输入可替换,输出包括等效锥度、接触点对、滚动圆半径差、接触角差等。 运行环境MATLAB2018b。主程序一键自动运行。 MATLAB实现轮轨接触几何计算(源代码和数据) 数据输入可替换,输出包括等效锥度、接触点对、滚动圆半径差、接触角差等。 运行环境MATLAB2018b。主程序一键自动运行。
recommend-type

台达变频器资料.zip

台达变频器

最新推荐

recommend-type

数据库SQL中having和where的用法区别

例如,`SELECT prd_no, SUM(qty) FROM sales GROUP BY prd_no ORDER BY SUM(qty) DESC`将返回每个产品销售量的汇总,按销售量降序排列。 了解这些概念对于编写复杂的SQL查询至关重要,特别是当需要处理大量数据和...
recommend-type

mysql中group by与having合用注意事项分享

当我们在SQL查询中使用 `GROUP BY` 时,必须遵循一个基本规则:在 `SELECT` 语句中列出的非聚合列必须在 `GROUP BY` 子句中出现。这是因为这些列在每个分组中都需要有唯一的值。 在提供的例子中,有一个简单的 `t` ...
recommend-type

【静态电流大】SGM2521_ SGM2522 电流限制开关官方数据手册.pdf

VIN 4.5V到24V Load IN ENU VOVP SS GND ILIM OUT SGM2521 R1 R2 R3 figure 1. 典型应用电路 包装和订购信息包括: * 模型:SGM2521、SGM2522 * 封装:Green SOIC-8、TDFN-2×3-8BL * 工作温度范围:-40℃ 到 +...
recommend-type

17位车架号详解、完整版本、VIN号

车辆的地理区域,通常是一个字母,它区分了车辆产地的大洲。例如,'J'代表日本,'W'代表德国,'1'则代表美国。这个字符提供了车辆产地的初步信息。 第二个字符进一步指定了生产国。在美国汽车工程师协会(SAE)的...
recommend-type

最全LM386_中文资料

LM386是一款低损耗电源专门设计的功率放大器集成电路,内建增益为20,通过pin 1和pin 8之间电容的搭配,增益最高可达200。LM386可以使用电池为供应电源,输入电压范围可由4V~12V,无作动时仅消耗4mA电流,且失真低。...
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"