AttributeError: 'PyntCloud' object has no attribute 'kneighbors'
时间: 2023-08-01 15:10:38 浏览: 120
很抱歉,我之前提供的代码中使用了错误的方法。`PyntCloud`对象确实没有`kneighbors`方法。在PyntCloud库中,可以使用`pyntcloud.kdtree.KDTree`来进行最近邻搜索。下面是修正后的代码:
```python
import numpy as np
import pyntcloud
from pyntcloud.kdtree import KDTree
def match_point_clouds(cloud1, cloud2):
# 创建KD树
kdtree = KDTree(cloud2.xyz)
# 最近邻搜索
_, indices = kdtree.query(cloud1.xyz, k=1)
# 匹配后的点云
matched_points = cloud2.points.loc[indices]
return matched_points
def compute_deviation(cloud1, cloud2):
deviations = cloud2.xyz - cloud1.xyz
return deviations
def write_to_txt(deviations, filename):
np.savetxt(filename, deviations, fmt='%.6f', delimiter=' ')
print(f"TXT file '{filename}' has been created.")
# 从本地文件加载点云数据
cloud1 = pyntcloud.PyntCloud.from_file('cloud1.ply')
cloud2 = pyntcloud.PyntCloud.from_file('cloud2.ply')
# 匹配点云
matched_points = match_point_clouds(cloud1, cloud2)
# 计算偏差值
deviations = compute_deviation(cloud1, matched_points)
# 将偏差值写入txt文件
write_to_txt(deviations, "deviations.txt")
print("Deviations have been written to deviations.txt")
```
在修正后的代码中,我们使用`pyntcloud.kdtree.KDTree`来创建KD树,并使用`query`方法进行最近邻搜索。然后,我们根据匹配的索引提取匹配后的点云。
接下来,我们计算匹配后点云中各个点的偏差值,并将偏差值写入txt文件的函数保持不变。
请确保在运行代码之前,将实际的点云数据保存在`cloud1.ply`和`cloud2.ply`文件中,并根据需要进行相应的修改。同时,需要安装`numpy`和`pyntcloud`库。非常抱歉给你带来了困扰,希望这次的代码能够正常运行。
阅读全文