用jupyter写一个粒子群算法
时间: 2024-10-12 13:13:08 浏览: 30
在Jupyter Notebook中编写粒子群优化(Particle Swarm Optimization,PSO)算法,首先需要导入必要的库,如`numpy`用于数值计算,以及可能的可视化库`matplotlib`。以下是简单的Python代码示例:
```python
import numpy as np
import matplotlib.pyplot as plt
# 初始化参数
def pso_init(swarm_size, dimensions, max_velocity, min_position, max_position):
positions = np.random.uniform(min_position, max_position, (swarm_size, dimensions))
velocities = np.random.uniform(-max_velocity, max_velocity, (swarm_size, dimensions))
best_positions = positions.copy()
personal_best_positions = positions.copy()
return positions, velocities, best_positions, personal_best_positions
# 计算适应度函数
def fitness_function(positions, target):
# 这里假设目标是一个简单的一维求最小值的问题
return np.abs(positions - target).sum(axis=1)
# 更新粒子位置和速度
def update(p_pos, v_vel, g_best_pos, w=0.7, c1=2, c2=2, inertia_weight=0.9):
r1, r2 = np.random.rand(*v_vel.shape), np.random.rand(*v_vel.shape)
new_vel = w * v_vel + c1 * r1 * (g_best_pos - p_pos) + c2 * r2 * (personal_best_positions - p_pos)
new_pos = np.clip(new_vel + p_pos, min_position, max_position)
return new_pos, new_vel
# 主循环
def main(swarm_size, dimensions, max_iterations, max_velocity, min_position, max_position, target):
positions, velocities, best_positions, personal_best_positions = pso_init(swarm_size, dimensions, max_velocity, min_position, max_position)
for _ in range(max_iterations):
velocities, positions = update(positions, velocities, best_positions)
# 更新全局和个人最佳位置
new_fitnesses = fitness_function(positions, target)
better_indices = new_fitnesses < fitness_function(best_positions, target)
best_positions[better_indices] = positions[better_indices]
personal_best_positions[np.where(new_fitnesses < fitness_function(personal_best_positions, target))] = positions[np.where(new_fitnesses < fitness_function(personal_best_positions, target))]
return best_positions, fitness_function(best_positions, target)
# 示例参数
swarm_size = 50
dimensions = 10
max_iterations = 100
max_velocity = 2
min_position = -50
max_position = 50
target = 0
best_solution, final_fitness = main(swarm_size, dimensions, max_iterations, max_velocity, min_position, max_position, target)
print("Best solution found:", best_solution)
print("Final fitness:", final_fitness)
# 可视化结果(如果需要)
plt.scatter(best_solution[:, 0], np.zeros_like(best_solution[:, 0]), s=100, c='r', label="Global Best")
plt.scatter(personal_best_positions[:, 0], np.zeros_like(personal_best_positions[:, 0]), s=50, c='b', label="Personal Best")
plt.xlabel("Position")
plt.ylabel("Fitness")
plt.legend()
plt.show()
阅读全文