gbdt回归预测的模型调优代码
时间: 2023-09-10 22:07:17 浏览: 124
GBDT(Gradient Boosting Decision Tree)是一种常用的回归预测模型,其调优可以通过以下步骤实现:
1. 导入需要的库和数据集,将数据集拆分为训练集和测试集。
```python
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.metrics import mean_squared_error
data = pd.read_csv('data.csv')
X = data.drop('target', axis=1)
y = data['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
2. 使用默认参数训练模型,并计算测试集上的均方误差(MSE)。
```python
gbdt = GradientBoostingRegressor(random_state=42)
gbdt.fit(X_train, y_train)
y_pred = gbdt.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print("MSE (default):", mse)
```
3. 调整树的数量(n_estimators)。
```python
for n in range(50, 201, 50):
gbdt = GradientBoostingRegressor(n_estimators=n, random_state=42)
gbdt.fit(X_train, y_train)
y_pred = gbdt.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print("n_estimators:", n, "MSE:", mse)
```
4. 调整每棵树的最大深度(max_depth)。
```python
for d in range(3, 10):
gbdt = GradientBoostingRegressor(max_depth=d, random_state=42)
gbdt.fit(X_train, y_train)
y_pred = gbdt.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print("max_depth:", d, "MSE:", mse)
```
5. 调整每棵树的叶子节点数量(min_samples_leaf)。
```python
for l in range(1, 6):
gbdt = GradientBoostingRegressor(min_samples_leaf=l, random_state=42)
gbdt.fit(X_train, y_train)
y_pred = gbdt.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print("min_samples_leaf:", l, "MSE:", mse)
```
6. 调整学习率(learning_rate)。
```python
for r in [0.1, 0.05, 0.01]:
gbdt = GradientBoostingRegressor(learning_rate=r, random_state=42)
gbdt.fit(X_train, y_train)
y_pred = gbdt.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print("learning_rate:", r, "MSE:", mse)
```
7. 根据调优结果选择最佳参数进行模型训练和预测。
```python
gbdt = GradientBoostingRegressor(n_estimators=150, max_depth=5, min_samples_leaf=3, learning_rate=0.05, random_state=42)
gbdt.fit(X_train, y_train)
y_pred = gbdt.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print("MSE (best):", mse)
```
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)