#5利用最佳参数预测结果 k=best_k modelKNN=neighbors.KNeighborsClassifier(n_neighbors=k,weights ='distance' ) modelKNN.fit(x_train,y_train) modelKNN.score(x_test,y_test) modelKNN.predict( x_test ) ###k是选取的最佳的超参数,表示在分类时考虑的最近邻居的个数。modelKNN是使用scikit-learn库中的KNeighborsClassifier类创建的一个分类器对象,其中n_neighbors参数设置为k,weights参数表示使用距离的倒数作为权重。接下来,使用fit()函数对训练数据进行拟合,使用score()函数计算模型在测试数据上的准确率,并使用predict()函数对测试数据进行分类,并返回预测结果。 plt.plot(best_k , lst_score)此代码怎样修改可得到直方图

时间: 2024-03-02 11:53:14 浏览: 20
要将代码修改为绘制直方图,可以使用Matplotlib库中的hist()函数绘制: 1. 将lst_score作为参数传递给hist()函数,以绘制分数的直方图; 2. 添加plt.title()、plt.xlabel()和plt.ylabel()函数,以添加标题和轴标签。 修改后的代码示例: ``` import matplotlib.pyplot as plt # 原代码 k = best_k modelKNN = neighbors.KNeighborsClassifier(n_neighbors=k, weights='distance') modelKNN.fit(x_train, y_train) score = modelKNN.score(x_test, y_test) y_pred = modelKNN.predict(x_test) # 绘制直方图 plt.hist(lst_score) plt.title('Histogram of Scores') plt.xlabel('Score') plt.ylabel('Frequency') plt.show() ``` 这样就能够绘制出准确率分数的直方图了。
相关问题

请教学式按句详细讲解以下代码:###--------------------KNN算法与决策树算法-------------------- from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split # 将文本数据转化为数值特征 vectorizer = TfidfVectorizer() X = vectorizer.fit_transform(data_str_list) # 划分数据集为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 特征缩放 scaler = StandardScaler() X_train = scaler.fit_transform(X_train.toarray()) X_test = scaler.transform(X_test.toarray()) from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import GridSearchCV from sklearn.metrics import accuracy_score # 使用网格搜索进行超参数调优 param_grid = { "n_neighbors": [3, 5, 7, 9], "weights": ["uniform", "distance"], "algorithm": ["auto", "ball_tree", "kd_tree", "brute"] } knn = KNeighborsClassifier() grid_search = GridSearchCV(knn, param_grid, cv=5) grid_search.fit(X_train, y_train) print("KNN最优参数:", grid_search.best_params_) param_grid = { "criterion": ["gini", "entropy"], "max_depth": [3, 5, 7, 9] } dt = DecisionTreeClassifier() grid_search = GridSearchCV(dt, param_grid, cv=5) grid_search.fit(X_train, y_train) print("决策树最优参数:", grid_search.best_params_) # 训练分类器并进行预测 knn = KNeighborsClassifier(n_neighbors=5, weights="uniform", algorithm="auto") knn.fit(X_train, y_train) knn_pred = knn.predict(X_test) dt = DecisionTreeClassifier(criterion="gini", max_depth=9) dt.fit(X_train, y_train) dt_pred = dt.predict(X_test) # 混合使用KNN和决策树进行文本分类 ensemble_pred = [] for i in range(len(knn_pred)): if knn_pred[i] == dt_pred[i]: ensemble_pred.append(knn_pred[i]) else: ensemble_pred.append(knn_pred[i]) # 输出分类结果和准确率 print("KNN准确率:", accuracy_score(y_test, knn_pred)) print("决策树准确率:", accuracy_score(y_test, dt_pred)) print("混合使用准确率:", accuracy_score(y_test, ensemble_pred))

这段代码的作用是使用KNN算法和决策树算法对文本进行分类,具体步骤如下: 1.导入所需的库: ``` from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import GridSearchCV from sklearn.metrics import accuracy_score ``` 其中,TfidfVectorizer用于将文本数据转化为数值特征,StandardScaler用于特征缩放,train_test_split用于划分数据集为训练集和测试集,KNeighborsClassifier和DecisionTreeClassifier分别用于KNN算法和决策树算法,GridSearchCV用于超参数调优,accuracy_score用于计算准确率。 2.将文本数据转化为数值特征: ``` vectorizer = TfidfVectorizer() X = vectorizer.fit_transform(data_str_list) ``` 其中,data_str_list为文本数据列表,fit_transform方法将文本数据转化为数值特征X。 3.划分数据集为训练集和测试集: ``` X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` 其中,test_size指定测试集占比,random_state指定随机种子,y为文本数据对应的标签。 4.特征缩放: ``` scaler = StandardScaler() X_train = scaler.fit_transform(X_train.toarray()) X_test = scaler.transform(X_test.toarray()) ``` 使用StandardScaler对特征进行缩放,fit_transform方法用于拟合和转换训练集特征,transform方法用于转换测试集特征。 5.使用网格搜索进行超参数调优: ``` param_grid = { "n_neighbors": [3, 5, 7, 9], "weights": ["uniform", "distance"], "algorithm": ["auto", "ball_tree", "kd_tree", "brute"] } knn = KNeighborsClassifier() grid_search = GridSearchCV(knn, param_grid, cv=5) grid_search.fit(X_train, y_train) print("KNN最优参数:", grid_search.best_params_) param_grid = { "criterion": ["gini", "entropy"], "max_depth": [3, 5, 7, 9] } dt = DecisionTreeClassifier() grid_search = GridSearchCV(dt, param_grid, cv=5) grid_search.fit(X_train, y_train) print("决策树最优参数:", grid_search.best_params_) ``` 使用GridSearchCV对KNN算法和决策树算法进行超参数调优,其中param_grid指定超参数搜索范围,cv指定交叉验证的次数,best_params_输出最优的超参数组合。 6.训练分类器并进行预测: ``` knn = KNeighborsClassifier(n_neighbors=5, weights="uniform", algorithm="auto") knn.fit(X_train, y_train) knn_pred = knn.predict(X_test) dt = DecisionTreeClassifier(criterion="gini", max_depth=9) dt.fit(X_train, y_train) dt_pred = dt.predict(X_test) ``` 使用最优的超参数组合训练分类器,并对测试集进行预测。 7.混合使用KNN和决策树进行文本分类: ``` ensemble_pred = [] for i in range(len(knn_pred)): if knn_pred[i] == dt_pred[i]: ensemble_pred.append(knn_pred[i]) else: ensemble_pred.append(knn_pred[i]) ``` 将KNN算法和决策树算法的预测结果进行比较,如果两种算法预测结果一致,则将结果添加到ensemble_pred中。 8.输出分类结果和准确率: ``` print("KNN准确率:", accuracy_score(y_test, knn_pred)) print("决策树准确率:", accuracy_score(y_test, dt_pred)) print("混合使用准确率:", accuracy_score(y_test, ensemble_pred)) ``` 使用accuracy_score函数计算分类器的准确率,并输出分类结果。

以下是使用KNN算法的过程,请详细解释以下代码,说明每个步骤如何实现,尤其需要说明调参过程的每句代码的用途以及做法来源:param_grid = { "n_neighbors": [3, 5, 7, 9], "weights": ["uniform", "distance"], "algorithm": ["auto", "ball_tree", "kd_tree", "brute"] } knn = KNeighborsClassifier() grid_search = GridSearchCV(knn, param_grid, cv=5) grid_search.fit(X_train, y_train) print("KNN最优参数:", grid_search.best_params_) knn = KNeighborsClassifier(n_neighbors=5, weights="uniform", algorithm="auto") knn.fit(X_train, y_train) knn_pred = knn.predict(X_test)

这段代码是使用KNN算法进行分类的过程,其中包括了调参过程来寻找最优的参数组合。下面逐行解释每句代码的用途和来源: 1. `param_grid = { "n_neighbors": [3, 5, 7, 9], "weights": ["uniform", "distance"], "algorithm": ["auto", "ball_tree", "kd_tree", "brute"] }` 这里定义了一个参数网格,包含了三个参数:k值(n_neighbors)、权重(weights)和算法(algorithm)。其中,k值是用来确定邻居的数量,权重是用来计算邻居对分类的影响权重,算法是用来寻找最近邻居的方法。每个参数都定义了一个候选列表,GridSearchCV会在这些参数中进行组合,寻找最优的参数组合。 2. `knn = KNeighborsClassifier()` 这里创建了一个KNeighborsClassifier实例,即KNN分类器的一个对象。 3. `grid_search = GridSearchCV(knn, param_grid, cv=5)` 这里使用GridSearchCV方法来进行参数调优,GridSearchCV会在给定的参数网格中进行组合,然后使用交叉验证(cv=5)来评估每个参数组合的性能,并返回最优的参数组合。 4. `grid_search.fit(X_train, y_train)` 这里对训练数据进行训练,使用fit方法来进行训练,这里的X_train是训练数据的特征矩阵,y_train是训练数据的标签。 5. `print("KNN最优参数:", grid_search.best_params_)` 这里输出最优的参数组合。 6. `knn = KNeighborsClassifier(n_neighbors=5, weights="uniform", algorithm="auto")` 这里使用最优的参数组合来创建一个新的KNeighborsClassifier实例。 7. `knn.fit(X_train, y_train)` 这里使用最优的参数组合对训练数据进行训练。 8. `knn_pred = knn.predict(X_test)` 这里使用训练好的KNN分类器对测试数据进行预测,得到预测结果knn_pred。 至此,这段代码的作用就是使用KNN算法对训练数据进行训练,通过交叉验证和网格搜索来寻找最优的参数组合,并在测试数据上进行预测。最终输出最优的参数组合和预测结果。

相关推荐

最新推荐

recommend-type

300ssm_jsp_mysql 记账管理系统.zip(可运行源码+sql文件+文档)

管理员需要配置的功能模块如下: (1)系统用户管理,管理员能够对系统中存在的用户的信息进行合理的维护操作,可以查看用户的信息以及在线进行密码的更换; (2)用户管理,管理员可以对该系统中用户进行管理,这个模块主要针对企业中的员工用户,管理员能够对这类的用户信息进行线上化的维护管理; (3)财务管理,该模块是整个系统的核心模块内容,在该模块的设计上,是通过对用户输入的收入、支出情况进行完整的内容查看,并且能够在线新增财务信息。 (4)财务统计,在财务统计的功能模块中,管理员可以看到当前所有用户累计的财务支出以及收入的情况,可以实现有效的数据统计工作。 本次的系统业务设计上是通过B/S结构来进行相应的管理系统搭建的。通过MVC三层框架结构来对整个系统中的不同功能模块实现分层的开发。在整个开发的过程中通过对不同的角色用户进行不同的功能权限的分配来对整个系统进行完整的设计。通过对不同的记账管理系统进行研究分析,了解到当下的记账管理系统普遍在收入、支出的统计上作为系统的核心要素来进行设计,在收支的系统自动统计上也需要进行有效的合理的内容设计。并且不同人员输入的信
recommend-type

一个简单的计数器,带有 2 个多路复用 SSD 和 2 个推送 btns 以递增或复位,使用分层架构在基于 stm32 ARM

一个简单的计数器,带有 2 个多路复用 SSD 和 2 个推送 btns 以递增或复位,使用分层架构在基于 stm32 ARM 的微控制器上运行
recommend-type

yolov8算法火焰和烟雾识别训练权重+数据集

yolov8算法火焰和烟雾识别训练权重, 包含15000多火焰和烟雾识别数据集(有网盘链接),数据集目录已经配置好,划分好 train,val, test,并附有data.yaml文件,yolov5、yolov7、yolov8,yolov9等算法可以直接进行训练模型,txt格式标签, 数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 数据集配置目录结构data.yaml: nc: 2 names: - fire - smoke
recommend-type

docker python3:10版本 镜像

docker python3:10 版本 镜像
recommend-type

代码,源代码,购物网站,电子商务,电子商务网站,.net代码,源代

代码,源代码,购物网站,电子商务,电子商务网站,.net代码,源代码,网站源代码,购物网站源代码,asp.net,asp.net的购物网站,sql2000数据库,vs2010平台,网站制作,网站制作源代码,c#,C#网站,C#购物网站,C#电子商务网站,全套的购物网,电子商务源代码,asp.net购物网站源码,简单的源代码,基本实现购物,实现购物的源代码,适用。1
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。