#5利用最佳参数预测结果 k=best_k modelKNN=neighbors.KNeighborsClassifier(n_neighbors=k,weights ='distance' ) modelKNN.fit(x_train,y_train) modelKNN.score(x_test,y_test) modelKNN.predict( x_test ) ###k是选取的最佳的超参数,表示在分类时考虑的最近邻居的个数。modelKNN是使用scikit-learn库中的KNeighborsClassifier类创建的一个分类器对象,其中n_neighbors参数设置为k,weights参数表示使用距离的倒数作为权重。接下来,使用fit()函数对训练数据进行拟合,使用score()函数计算模型在测试数据上的准确率,并使用predict()函数对测试数据进行分类,并返回预测结果。 plt.plot(best_k , lst_score)此代码怎样修改可得到直方图
时间: 2024-03-02 12:53:14 浏览: 77
要将代码修改为绘制直方图,可以使用Matplotlib库中的hist()函数绘制:
1. 将lst_score作为参数传递给hist()函数,以绘制分数的直方图;
2. 添加plt.title()、plt.xlabel()和plt.ylabel()函数,以添加标题和轴标签。
修改后的代码示例:
```
import matplotlib.pyplot as plt
# 原代码
k = best_k
modelKNN = neighbors.KNeighborsClassifier(n_neighbors=k, weights='distance')
modelKNN.fit(x_train, y_train)
score = modelKNN.score(x_test, y_test)
y_pred = modelKNN.predict(x_test)
# 绘制直方图
plt.hist(lst_score)
plt.title('Histogram of Scores')
plt.xlabel('Score')
plt.ylabel('Frequency')
plt.show()
```
这样就能够绘制出准确率分数的直方图了。
相关问题
请教学式按句详细讲解以下代码:###--------------------KNN算法与决策树算法-------------------- from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split # 将文本数据转化为数值特征 vectorizer = TfidfVectorizer() X = vectorizer.fit_transform(data_str_list) # 划分数据集为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 特征缩放 scaler = StandardScaler() X_train = scaler.fit_transform(X_train.toarray()) X_test = scaler.transform(X_test.toarray()) from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import GridSearchCV from sklearn.metrics import accuracy_score # 使用网格搜索进行超参数调优 param_grid = { "n_neighbors": [3, 5, 7, 9], "weights": ["uniform", "distance"], "algorithm": ["auto", "ball_tree", "kd_tree", "brute"] } knn = KNeighborsClassifier() grid_search = GridSearchCV(knn, param_grid, cv=5) grid_search.fit(X_train, y_train) print("KNN最优参数:", grid_search.best_params_) param_grid = { "criterion": ["gini", "entropy"], "max_depth": [3, 5, 7, 9] } dt = DecisionTreeClassifier() grid_search = GridSearchCV(dt, param_grid, cv=5) grid_search.fit(X_train, y_train) print("决策树最优参数:", grid_search.best_params_) # 训练分类器并进行预测 knn = KNeighborsClassifier(n_neighbors=5, weights="uniform", algorithm="auto") knn.fit(X_train, y_train) knn_pred = knn.predict(X_test) dt = DecisionTreeClassifier(criterion="gini", max_depth=9) dt.fit(X_train, y_train) dt_pred = dt.predict(X_test) # 混合使用KNN和决策树进行文本分类 ensemble_pred = [] for i in range(len(knn_pred)): if knn_pred[i] == dt_pred[i]: ensemble_pred.append(knn_pred[i]) else: ensemble_pred.append(knn_pred[i]) # 输出分类结果和准确率 print("KNN准确率:", accuracy_score(y_test, knn_pred)) print("决策树准确率:", accuracy_score(y_test, dt_pred)) print("混合使用准确率:", accuracy_score(y_test, ensemble_pred))
这段代码的作用是使用KNN算法和决策树算法对文本进行分类,具体步骤如下:
1.导入所需的库:
```
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score
```
其中,TfidfVectorizer用于将文本数据转化为数值特征,StandardScaler用于特征缩放,train_test_split用于划分数据集为训练集和测试集,KNeighborsClassifier和DecisionTreeClassifier分别用于KNN算法和决策树算法,GridSearchCV用于超参数调优,accuracy_score用于计算准确率。
2.将文本数据转化为数值特征:
```
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(data_str_list)
```
其中,data_str_list为文本数据列表,fit_transform方法将文本数据转化为数值特征X。
3.划分数据集为训练集和测试集:
```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
其中,test_size指定测试集占比,random_state指定随机种子,y为文本数据对应的标签。
4.特征缩放:
```
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train.toarray())
X_test = scaler.transform(X_test.toarray())
```
使用StandardScaler对特征进行缩放,fit_transform方法用于拟合和转换训练集特征,transform方法用于转换测试集特征。
5.使用网格搜索进行超参数调优:
```
param_grid = {
"n_neighbors": [3, 5, 7, 9],
"weights": ["uniform", "distance"],
"algorithm": ["auto", "ball_tree", "kd_tree", "brute"]
}
knn = KNeighborsClassifier()
grid_search = GridSearchCV(knn, param_grid, cv=5)
grid_search.fit(X_train, y_train)
print("KNN最优参数:", grid_search.best_params_)
param_grid = {
"criterion": ["gini", "entropy"],
"max_depth": [3, 5, 7, 9]
}
dt = DecisionTreeClassifier()
grid_search = GridSearchCV(dt, param_grid, cv=5)
grid_search.fit(X_train, y_train)
print("决策树最优参数:", grid_search.best_params_)
```
使用GridSearchCV对KNN算法和决策树算法进行超参数调优,其中param_grid指定超参数搜索范围,cv指定交叉验证的次数,best_params_输出最优的超参数组合。
6.训练分类器并进行预测:
```
knn = KNeighborsClassifier(n_neighbors=5, weights="uniform", algorithm="auto")
knn.fit(X_train, y_train)
knn_pred = knn.predict(X_test)
dt = DecisionTreeClassifier(criterion="gini", max_depth=9)
dt.fit(X_train, y_train)
dt_pred = dt.predict(X_test)
```
使用最优的超参数组合训练分类器,并对测试集进行预测。
7.混合使用KNN和决策树进行文本分类:
```
ensemble_pred = []
for i in range(len(knn_pred)):
if knn_pred[i] == dt_pred[i]:
ensemble_pred.append(knn_pred[i])
else:
ensemble_pred.append(knn_pred[i])
```
将KNN算法和决策树算法的预测结果进行比较,如果两种算法预测结果一致,则将结果添加到ensemble_pred中。
8.输出分类结果和准确率:
```
print("KNN准确率:", accuracy_score(y_test, knn_pred))
print("决策树准确率:", accuracy_score(y_test, dt_pred))
print("混合使用准确率:", accuracy_score(y_test, ensemble_pred))
```
使用accuracy_score函数计算分类器的准确率,并输出分类结果。
以下是使用KNN算法的过程,请详细解释以下代码,说明每个步骤如何实现,尤其需要说明调参过程的每句代码的用途以及做法来源:param_grid = { "n_neighbors": [3, 5, 7, 9], "weights": ["uniform", "distance"], "algorithm": ["auto", "ball_tree", "kd_tree", "brute"] } knn = KNeighborsClassifier() grid_search = GridSearchCV(knn, param_grid, cv=5) grid_search.fit(X_train, y_train) print("KNN最优参数:", grid_search.best_params_) knn = KNeighborsClassifier(n_neighbors=5, weights="uniform", algorithm="auto") knn.fit(X_train, y_train) knn_pred = knn.predict(X_test)
这段代码是使用KNN算法进行分类的过程,其中包括了调参过程来寻找最优的参数组合。下面逐行解释每句代码的用途和来源:
1. `param_grid = { "n_neighbors": [3, 5, 7, 9], "weights": ["uniform", "distance"], "algorithm": ["auto", "ball_tree", "kd_tree", "brute"] }`
这里定义了一个参数网格,包含了三个参数:k值(n_neighbors)、权重(weights)和算法(algorithm)。其中,k值是用来确定邻居的数量,权重是用来计算邻居对分类的影响权重,算法是用来寻找最近邻居的方法。每个参数都定义了一个候选列表,GridSearchCV会在这些参数中进行组合,寻找最优的参数组合。
2. `knn = KNeighborsClassifier()`
这里创建了一个KNeighborsClassifier实例,即KNN分类器的一个对象。
3. `grid_search = GridSearchCV(knn, param_grid, cv=5)`
这里使用GridSearchCV方法来进行参数调优,GridSearchCV会在给定的参数网格中进行组合,然后使用交叉验证(cv=5)来评估每个参数组合的性能,并返回最优的参数组合。
4. `grid_search.fit(X_train, y_train)`
这里对训练数据进行训练,使用fit方法来进行训练,这里的X_train是训练数据的特征矩阵,y_train是训练数据的标签。
5. `print("KNN最优参数:", grid_search.best_params_)`
这里输出最优的参数组合。
6. `knn = KNeighborsClassifier(n_neighbors=5, weights="uniform", algorithm="auto")`
这里使用最优的参数组合来创建一个新的KNeighborsClassifier实例。
7. `knn.fit(X_train, y_train)`
这里使用最优的参数组合对训练数据进行训练。
8. `knn_pred = knn.predict(X_test)`
这里使用训练好的KNN分类器对测试数据进行预测,得到预测结果knn_pred。
至此,这段代码的作用就是使用KNN算法对训练数据进行训练,通过交叉验证和网格搜索来寻找最优的参数组合,并在测试数据上进行预测。最终输出最优的参数组合和预测结果。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)