后方交会qt c++代码。已知三点坐标和方位角。帮我写个代码
时间: 2023-09-03 20:07:26 浏览: 99
基于Qt和C++实现的代码行数统计工具+源码
好的,以下是一个简单的后方交会算法的QT C++代码示例,假设已知三个点的坐标和方位角:
```cpp
#include <QtCore/QCoreApplication>
#include <QtCore/QDebug>
#include <QtMath>
// 定义点结构体
struct Point {
double x;
double y;
double z;
};
// 后方交会算法
Point resection(Point A, Point B, Point C, double alpha, double beta, double gamma) {
// 将方位角转换为弧度制
alpha = qDegreesToRadians(alpha);
beta = qDegreesToRadians(beta);
gamma = qDegreesToRadians(gamma);
// 计算向量AB, AC
double ABx = B.x - A.x;
double ABy = B.y - A.y;
double ABz = B.z - A.z;
double ACx = C.x - A.x;
double ACy = C.y - A.y;
double ACz = C.z - A.z;
// 计算旋转矩阵
double R11 = qCos(beta) * qCos(gamma);
double R12 = -qCos(beta) * qSin(gamma);
double R13 = qSin(beta);
double R21 = qSin(alpha) * qSin(beta) * qCos(gamma) + qCos(alpha) * qSin(gamma);
double R22 = -qSin(alpha) * qSin(beta) * qSin(gamma) + qCos(alpha) * qCos(gamma);
double R23 = -qSin(alpha) * qCos(beta);
double R31 = -qCos(alpha) * qSin(beta) * qCos(gamma) + qSin(alpha) * qSin(gamma);
double R32 = qCos(alpha) * qSin(beta) * qSin(gamma) + qSin(alpha) * qCos(gamma);
double R33 = qCos(alpha) * qCos(beta);
// 计算旋转矩阵的逆矩阵
double det = R11 * R22 * R33 + R12 * R23 * R31 + R13 * R21 * R32 - R11 * R23 * R32 - R12 * R21 * R33 - R13 * R22 * R31;
double invR11 = (R22 * R33 - R23 * R32) / det;
double invR12 = (R13 * R32 - R12 * R33) / det;
double invR13 = (R12 * R23 - R13 * R22) / det;
double invR21 = (R23 * R31 - R21 * R33) / det;
double invR22 = (R11 * R33 - R13 * R31) / det;
double invR23 = (R13 * R21 - R11 * R23) / det;
double invR31 = (R21 * R32 - R22 * R31) / det;
double invR32 = (R12 * R31 - R11 * R32) / det;
double invR33 = (R11 * R22 - R12 * R21) / det;
// 计算基线向量B1B2
double B1x = invR11 * ABx + invR12 * ABy + invR13 * ABz;
double B1y = invR21 * ABx + invR22 * ABy + invR23 * ABz;
double B1z = invR31 * ABx + invR32 * ABy + invR33 * ABz;
double B2x = invR11 * ACx + invR12 * ACy + invR13 * ACz;
double B2y = invR21 * ACx + invR22 * ACy + invR23 * ACz;
double B2z = invR31 * ACx + invR32 * ACy + invR33 * ACz;
// 计算基线向量的长度
double B1B2 = qSqrt(qPow((B2x - B1x), 2) + qPow((B2y - B1y), 2) + qPow((B2z - B1z), 2));
// 计算t1, t2
double t1 = qSqrt(qPow((A.x - B.x), 2) + qPow((A.y - B.y), 2) + qPow((A.z - B.z), 2));
double t2 = qSqrt(qPow((A.x - C.x), 2) + qPow((A.y - C.y), 2) + qPow((A.z - C.z), 2));
// 计算坐标值
double x = A.x + B1x * t1 / B1B2;
double y = A.y + B1y * t1 / B1B2;
double z = A.z + B1z * t1 / B1B2;
// 返回结果
return {x, y, z};
}
int main(int argc, char *argv[])
{
QCoreApplication a(argc, argv);
// 测试数据
Point A = {0, 0, 0};
Point B = {100, 0, 0};
Point C = {0, 100, 0};
double alpha = 30;
double beta = 40;
double gamma = 50;
// 调用后方交会算法
Point result = resection(A, B, C, alpha, beta, gamma);
// 输出结果
qDebug() << "x:" << result.x << ", y:" << result.y << ", z:" << result.z;
return a.exec();
}
```
请注意,这只是一个简单的示例代码,实际应用中需要考虑更多的因素,如误差分析、精度要求等。
阅读全文