pyspark split
时间: 2023-05-14 14:04:41 浏览: 98
可以使用 pyspark 中的 split 函数将字符串按照指定的分隔符进行分割,例如:
```
from pyspark.sql.functions import split
# 创建一个 DataFrame
df = spark.createDataFrame([(1, "John,Doe"), (2, "Jane,Smith")], ["id", "name"])
# 使用 split 函数将 name 列按照逗号进行分割
df = df.withColumn("first_name", split(df["name"], ",")[0])
df = df.withColumn("last_name", split(df["name"], ",")[1])
# 显示结果
df.show()
```
输出结果:
```
+---+---------+----------+
| id| name|first_name|last_name|
+---+---------+----------+
| 1| John,Doe| John| Doe|
| 2|Jane,Smith| Jane| Smith|
+---+---------+----------+---------+
```
相关问题
org.apache.spark.api.python.PythonException: Traceback (most recent call last): File "/Users/zzs/PycharmProjects/pythonProject/venv/lib/python3.10/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py", line 830, in main process() File "/Users/zzs/PycharmProjects/pythonProject/venv/lib/python3.10/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py", line 820, in process out_iter = func(split_index, iterator) File "/Users/zzs/PycharmProjects/pythonProject/venv/lib/python3.10/site-packages/pyspark/rdd.py", line 5405, in pipeline_func return func(split, prev_func(split, iterator)) File "/Users/zzs/PycharmProjects/pythonProject/venv/lib/python3.10/site-packages/pyspark/rdd.py", line 5405, in pipeline_func return func(split, prev_func(split, iterator)) File "/Users/zzs/PycharmProjects/pythonProject/venv/lib/python3.10/site-packages/pyspark/rdd.py", line 828, in func return f(iterator) File "/Users/zzs/PycharmProjects/pythonProject/venv/lib/python3.10/site-packages/pyspark/rdd.py", line 3964, in combineLocally merger.mergeValues(iterator) File "/Users/zzs/PycharmProjects/pythonProject/venv/lib/python3.10/site-packages/pyspark/python/lib/pyspark.zip/pyspark/shuffle.py", line 256, in mergeValues for k, v in iterator: File "/Users/zzs/PycharmProjects/pythonProject/venv/lib/python3.10/site-packages/pyspark/python/lib/pyspark.zip/pyspark/util.py", line 81, in wrapper return f(*args, **kwargs) File "/Users/zzs/PycharmProjects/pythonProject/pyspark项目练习/项目练习2.py", line 7, in <lambda> json_str_file = file_rdd.flatMap(lambda x: x.spilt("|")) AttributeError: 'str' object has no attribute 'spilt' at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:561) at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:767) at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:749) at org.apache.spark.api.python.BasePythonRun
这个错误是由于在代码的第7行中使用了错误的方法名。正确的方法名应该是`split`而不是`spilt`。`split`方法用于将字符串分割为一个列表。将第7行代码修改为以下内容应该可以解决问题:
```python
json_str_file = file_rdd.flatMap(lambda x: x.split("|"))
```
请注意,`split`方法的参数是分割符,根据你的需求可能需要使用不同的分割符。
pyspark concat
在PySpark中,使用concat函数可以将多个列的值合为一个列。引用中的示例代码展示了如何使用concat函数。首先,我们需要创建一个SparkSession并读取CSV文件。然后,使用withColumn方法将要拼接的列传递给concat函数,并指定拼接后的新列的名称。最后,使用show方法来展示结果。
以下是一个示例代码:
```
from pyspark.sql import SparkSession
from pyspark.sql.functions import concat
spark = SparkSession.builder.master("local").appName("concat_example").getOrCreate()
# 读取CSV文件
df = spark.read.csv("./demo.csv", inferSchema=True, header=True)
# 使用concat函数将gid和score列合并为一个新列
df_concat = df.withColumn("concat_column", concat(df["gid"], df["score"]))
# 展示结果
df_concat.show()
```
执行以上代码后,将会展示包含合并列的数据框。
请注意,示例中的concat函数仅演示了将两列合并为一个新列的情况。如果要合并多个列,只需在concat函数中添加更多的列参数即可。
引用中的代码展示了如何使用split函数将一个包含分隔符的字符串列拆分为多个列。可以将split函数与concat函数一起使用,将多列拆分后再进行合并。
希望这个解答对你有所帮助!<em>1</em><em>2</em>
#### 引用[.reference_title]
- *1* [pyspark案例系列3-dataframe实现mysql的group_concat功能](https://blog.csdn.net/u010520724/article/details/117218576)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}} ] [.reference_item]
- *2* [PySpark 列的合并与拆分](https://blog.csdn.net/Harrytsz/article/details/121505056)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}} ] [.reference_item]
[ .reference_list ]
阅读全文