tensorflow搭建ResNet50V2
时间: 2023-10-05 22:13:56 浏览: 112
以下为使用TensorFlow搭建ResNet50V2的步骤:
1. 导入必要的库
```python
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, BatchNormalization, Activation, Dense, Flatten, Add, ZeroPadding2D, AveragePooling2D
from tensorflow.keras.models import Model
from tensorflow.keras import backend as K
```
2. 定义卷积块函数
```python
def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)):
"""
定义ResNet中的卷积块
"""
filters1, filters2, filters3 = filters
if K.image_data_format() == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
# 定义卷积块名称
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
# 第一层卷积
x = Conv2D(filters1, (1, 1), strides=strides, name=conv_name_base + '2a')(input_tensor)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
x = Activation('relu')(x)
# 第二层卷积
x = Conv2D(filters2, kernel_size, padding='same', name=conv_name_base + '2b')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
x = Activation('relu')(x)
# 第三层卷积
x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)
# shortcut
shortcut = Conv2D(filters3, (1, 1), strides=strides, name=conv_name_base + '1')(input_tensor)
shortcut = BatchNormalization(axis=bn_axis, name=bn_name_base + '1')(shortcut)
x = Add()([x, shortcut])
x = Activation('relu')(x)
return x
```
3. 定义恒等块函数
```python
def identity_block(input_tensor, kernel_size, filters, stage, block):
"""
定义ResNet中的恒等块
"""
filters1, filters2, filters3 = filters
if K.image_data_format() == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
# 定义恒等块名称
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
# 第一层卷积
x = Conv2D(filters1, (1, 1), name=conv_name_base + '2a')(input_tensor)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
x = Activation('relu')(x)
# 第二层卷积
x = Conv2D(filters2, kernel_size, padding='same', name=conv_name_base + '2b')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
x = Activation('relu')(x)
# 第三层卷积
x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)
x = Add()([x, input_tensor])
x = Activation('relu')(x)
return x
```
4. 定义ResNet50V2模型
```python
def ResNet50V2(input_shape=(224, 224, 3), classes=1000):
"""
定义ResNet50V2模型
"""
if K.image_data_format() == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
# 输入层
img_input = Input(shape=input_shape)
# 第一层卷积
x = ZeroPadding2D(padding=(3, 3))(img_input)
x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)
x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
x = Activation('relu')(x)
x = MaxPooling2D((3, 3), strides=(2, 2))(x)
# 卷积块
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
# 卷积块
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
# 卷积块
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
# 卷积块
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
# 平均池化层
x = AveragePooling2D((7, 7), name='avg_pool')(x)
# 全连接层
x = Flatten()(x)
x = Dense(classes, activation='softmax', name='fc1000')(x)
# 构建模型
model = Model(img_input, x, name='resnet50v2')
return model
```
5. 编译模型并训练
```python
model = ResNet50V2(input_shape=(224, 224, 3), classes=1000)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(x_train, y_train, epochs=10, batch_size=32)
```
以上就是使用TensorFlow搭建ResNet50V2的步骤。
阅读全文