tpa注意力机制python代码
时间: 2023-11-12 18:11:03 浏览: 84
TPA(Triple Perspective Attention)注意力机制的 Python 代码实现如下:
```python
import torch
import torch.nn as nn
class TPAAttention(nn.Module):
def __init__(self, input_dim, hidden_dim):
super(TPAAttention, self).__init__()
self.query_linear = nn.Linear(input_dim, hidden_dim)
self.key_linear = nn.Linear(input_dim, hidden_dim)
self.value_linear = nn.Linear(input_dim, hidden_dim)
self.fc = nn.Linear(hidden_dim, 1)
def forward(self, input):
# input shape: (batch_size, seq_len, input_dim)
# calculate Q,K,V
Q = self.query_linear(input) # shape: (batch_size, seq_len, hidden_dim)
K = self.key_linear(input) # shape: (batch_size, seq_len, hidden_dim)
V = self.value_linear(input) # shape: (batch_size, seq_len, hidden_dim)
# calculate score
score = torch.tanh(Q + K) # shape: (batch_size, seq_len, hidden_dim)
score = self.fc(score).squeeze(dim=2) # shape: (batch_size, seq_len)
# calculate weight
weight = torch.softmax(score, dim=1) # shape: (batch_size, seq_len)
# calculate context vector
context = torch.bmm(weight.unsqueeze(dim=1), V).squeeze(dim=1) # shape: (batch_size, hidden_dim)
return context
```
其中,`input_dim` 为输入特征的维度,`hidden_dim` 为隐藏层的维度。`query_linear`、`key_linear` 和 `value_linear` 分别为线性变换层,用于将输入特征映射到隐藏维度。`fc` 为全连接层,用于计算注意力分数。在 `forward` 方法中,先计算 Q、K、V,然后计算注意力分数 score,并使用 softmax 函数计算得到注意力权重 weight。最后,使用权重 weight 对 V 进行加权求和,得到上下文向量 context。
阅读全文