pytorch 实现 ResNet50 实现特征提取且最后输出为1*32720的一维向量
时间: 2024-05-08 09:22:32 浏览: 128
可以使用预训练的 ResNet50 模型,并将其最后一层的全连接层去掉,这样就可以得到一个特征提取器。然后,你可以将输入数据输入到这个特征提取器中,得到一个形状为 [batch_size, 2048, 1, 1] 的张量。接下来,你需要将这个张量展平成一个形状为 [batch_size, 2048] 的张量,然后再将其传递到一个全连接层中,输出一个形状为 [batch_size, 32720] 的张量。具体的代码实现如下:
```python
import torch
import torch.nn as nn
import torchvision.models as models
class ResNet50(nn.Module):
def __init__(self):
super(ResNet50, self).__init__()
self.resnet50 = models.resnet50(pretrained=True)
self.resnet50.fc = nn.Identity() # 去掉最后一层全连接层
self.fc = nn.Linear(2048, 32720)
def forward(self, x):
x = self.resnet50(x)
x = x.view(x.size(0), -1) # 展平特征张量
x = self.fc(x)
return x
```
这里的 `ResNet50` 类继承自 `nn.Module`,并包含了一个预训练的 ResNet50 模型和一个全连接层。在前向传播中,我们首先将输入数据输入到 ResNet50 模型中,得到一个形状为 [batch_size, 2048, 1, 1] 的张量,然后将其展平成一个形状为 [batch_size, 2048] 的张量,并将其传递到全连接层中,得到一个形状为 [batch_size, 32720] 的输出张量。
阅读全文