离线怎么安装queue

时间: 2023-07-24 08:09:09 浏览: 30
如果您要在离线环境下安装queue模块,可以按照以下步骤进行操作: 1. 在另一台联网电脑上,使用以下命令下载queue模块及其依赖项: ``` pip download queue ``` 这将会下载queue模块及其依赖项到当前目录下。 2. 将下载好的文件拷贝到离线环境下的电脑中。 3. 在离线环境下的电脑中,使用以下命令安装queue模块及其依赖项: ``` pip install --no-index --find-links=<path/to/downloaded/files> queue ``` 其中,`<path/to/downloaded/files>`为下载好的文件所在的目录。 这样,您就可以在离线环境下安装queue模块了。请注意,如果queue模块有其他依赖项,您需要将它们也下载并拷贝到离线环境下的电脑中,并在安装时指定它们的路径。
相关问题

ubuntu离线安装rabbitmq

可以通过以下步骤在Ubuntu上离线安装RabbitMQ: 1. 下载RabbitMQ的deb包和依赖包,可以从官网或者镜像站下载。 2. 将下载的deb包和依赖包复制到Ubuntu系统中。 3. 安装依赖包,可以使用dpkg命令进行安装,例如: ``` sudo dpkg -i erlang-base_22.3.4.1-1_amd64.deb sudo dpkg -i erlang-asn1_22.3.4.1-1_amd64.deb sudo dpkg -i erlang-crypto_22.3.4.1-1_amd64.deb sudo dpkg -i erlang-public-key_22.3.4.1-1_amd64.deb sudo dpkg -i erlang-ssl_22.3.4.1-1_amd64.deb sudo dpkg -i erlang-syntax-tools_22.3.4.1-1_amd64.deb sudo dpkg -i erlang-mnesia_22.3.4.1-1_amd64.deb sudo dpkg -i erlang-runtime-tools_22.3.4.1-1_amd64.deb sudo dpkg -i erlang-inets_22.3.4.1-1_amd64.deb sudo dpkg -i erlang-os-mon_22.3.4.1-1_amd64.deb sudo dpkg -i erlang-xmerl_22.3.4.1-1_amd64.deb ``` 4. 安装RabbitMQ,可以使用dpkg命令进行安装,例如: ``` sudo dpkg -i rabbitmq-server_3.8.9-1_all.deb ``` 5. 启动RabbitMQ服务,可以使用以下命令启动: ``` sudo systemctl start rabbitmq-server ``` 6. 验证RabbitMQ是否安装成功,可以使用以下命令: ``` sudo rabbitmqctl status ``` 如果输出类似于以下内容,则表示RabbitMQ已经成功安装: ``` Status of node rabbit@localhost ... [{pid,1593}, {running_applications,[{rabbit,"RabbitMQ","3.8.9"}, {rabbit_common,[],"3.8.9"}, {xmerl,"XML parser","1.3.18"}, {os_mon,"CPO CXC 138 46","2.4.7"}, {cowboy,"Small, fast, modern HTTP server.","2.8.0"}, {cowlib,"Support library for manipulating Web protocols.","2.9.1"}, {ranch,"Socket acceptor pool for TCP protocols.","1.7.1"}, {ssl,"Erlang/OTP SSL application","10.6.2"}, {public_key,"Public key infrastructure","1.10.4"}, {asn1,"The Erlang ASN1 compiler version 5.0.8","5.0.8"}]}, {os,{unix,linux}}, {erlang_version,"Erlang/OTP 22 [erts-10.7.2] [source] [64-bit] [smp:2:2] [ds:2:2:10] [async-threads:64] [hipe] [dtrace]\n"}, {memory,[{total,37437904}, {connection_readers,0}, {connection_writers,0}, {connection_channels,0}, {connection_other,0}, {queue_procs,0}, {queue_slave_procs,0}, {plugins,0}, {other_proc,2147483647}, {mnesia,0}, {mgmt_db,0}, {msg_index,0}, {other_ets,0}, {binary,0}, {code,0}, {atom,1049}, {other_system,0}]}, {alarms,[]}, {listeners,[{clustering,25672,"::"},{amqp,5672,"::"}]}, {vm_memory_high_watermark,0.4}, {vm_memory_limit,6708623872}, {disk_free_limit,50000000}, {disk_free,105586227712}, {file_descriptors,[{total_limit,1048576}, {total_used,2}, {sockets_limit,943626}, {sockets_used,0}]}, {processes,[{limit,1048576},{used,57}]}, {run_queue,0}, {uptime,6}] ``` 希望这个回答能够帮助到你!

cdh5上离线安装spark2.3并配置hive on spark2

### 回答1: 1. 下载Spark2.3二进制包并解压缩到指定目录下。 2. 配置Spark2.3环境变量,包括SPARK_HOME、PATH等。 3. 在Hive的配置文件hive-site.xml中添加以下配置: <property> <name>hive.execution.engine</name> <value>spark</value> </property> <property> <name>spark.master</name> <value>yarn</value> </property> <property> <name>spark.submit.deployMode</name> <value>client</value> </property> <property> <name>spark.executor.memory</name> <value>2g</value> </property> <property> <name>spark.executor.instances</name> <value>2</value> </property> <property> <name>spark.yarn.queue</name> <value>default</value> </property> 4. 在CDH管理界面中,选择“服务”->“Hive”->“配置”,在“Hive服务高级配置分类”中添加以下配置: hive.spark.client.server.connect.timeout=600 hive.spark.client.connect.timeout=600 hive.spark.client.rpc.max.size=52428800 hive.spark.client.rpc.threads=8 hive.spark.client.rpc.maxRetries=3 hive.spark.client.rpc.retryInterval=3000 5. 重启Hive服务,使配置生效。 以上就是在CDH5上离线安装Spark2.3并配置Hive on Spark2的步骤。 ### 回答2: CDH5是Cloudera的企业级Hadoop分布式平台,它包含了Hadoop、Hive、Spark、HBase等大数据生态系统的核心组件。本文将介绍如何在CDH5上离线安装Spark2.3并配置Hive on Spark2。 一、下载Spark2.3压缩包 首先,在离线环境中下载Spark2.3的二进制压缩包。可以前往Spark的官方网站(https://spark.apache.org/downloads.html)下载,或者在其他可联网的环境中下载后通过U盘等方式复制到离线环境中。 二、解压Spark2.3压缩包 把下载好的Spark2.3压缩包复制到离线环境中,并解压到指定目录下(例如:/opt/software)。 tar -xzvf spark-2.3.0-bin-hadoop2.7.tgz -C /opt/software 三、配置Spark2.3 1. 配置spark-env.sh 在Spark2.3的解压目录中,会有一个conf目录,里面包含了Spark的一些配置文件。我们需要修改其中的spark-env.sh文件,添加以下内容: export HADOOP_CONF_DIR=/etc/hadoop/conf export SPARK_LOCAL_IP=127.0.0.1 export SPARK_MASTER_HOST=127.0.0.1 export SPARK_MASTER_PORT=7077 其中,HADOOP_CONF_DIR指定的是Hadoop的配置文件所在目录,SPARK_LOCAL_IP是Spark本地IP地址,SPARK_MASTER_HOST指定的是Spark的master节点地址,SPARK_MASTER_PORT指定的是Spark的master节点端口号。 2. 配置spark-defaults.conf 修改spark-defaults.conf文件,添加以下内容: spark.executor.extraClassPath /opt/software/spark-2.3.0-bin-hadoop2.7/jars/* spark.driver.extraClassPath /opt/software/spark-2.3.0-bin-hadoop2.7/jars/* 其中,extraClassPath指定的是Spark j开头的jar包所在的目录。这些jar包包含了Spark运行所需的所有依赖。 四、配置Hive on Spark2 在用Spark2.3运行Hive之前,需要先配置Hive on Spark2。此配置步骤需要在Hive安装之前完成。 1. 创建hive-site.xml文件 在Hive的conf目录下,创建hive-site.xml文件,并添加以下内容: <property> <name>hive.execution.engine</name> <value>spark</value> <description>选择Hive on Spark2作为执行引擎</description> </property> <property> <name>spark.master</name> <value>spark://127.0.0.1:7077</value> <description>指定Spark的master地址</description> </property> <property> <name>spark.submit.deployMode</name> <value>client</value> <description>指定Spark的deploy模式</description> </property> <property> <name>spark.executor.instances</name> <value>1</value> <description>指定每个任务的executor数量</description> </property> <property> <name>spark.driver.extraClassPath</name> <value>/opt/software/spark-2.3.0-bin-hadoop2.7/jars/*</value> <description>指定Spark的依赖jar包所在的目录</description> </property> 2. 修改hive-exec.jar 在Hive的lib目录下,找到hive-exec.jar包,将其解压,编辑hive-site.xml文件,添加如下内容: <property> <name>hive.execution.engine</name> <value>spark</value> <description>选择Hive on Spark2作为执行引擎</description> </property> <property> <name>hive.spark.client.server.connect.timeout</name> <value>600s</value> <description>指定连接Spark的超时时间</description> </property> 重新生成hive-exec.jar: jar -cf hive-exec.jar . 3. 启动Spark 在Spark的解压目录下,执行以下命令启动Spark: ./sbin/start-all.sh 启动成功后,可以通过以下命令查看Spark的Web UI: http://127.0.0.1:8080 四、启动Hive on Spark2 在完成了Spark和Hive的配置之后,就可以启动Hive on Spark2了。 1. 在Hive的bin目录下,执行以下命令启动Hive: ./hive 2. 运行Hive命令 可以执行以下Hive命令测试是否配置成功: hive> show databases; 如果一切正常,将看到当前数据仓库中的所有数据库名称。 以上就是在CDH5上离线安装Spark2.3并配置Hive on Spark2的步骤。 ### 回答3: CDH5是一套Hadoop发行版,其中包含了许多大数据组件。在CDH5上离线安装Spark2.3并配置Hive on Spark2需要进行以下步骤: 第一步,安装Java和Scala Java和Scala是Spark的预备条件。安装Java和Scala可以通过以下命令: $ sudo yum install java-1.8.0-openjdk $ sudo yum install scala 第二步,下载Spark 2.3 Spark最新的版本是2.3.0。从官方网站上下载Spark 2.3。下载后,将其解压到合适的目录中。例如,解压到/opt目录中: $ sudo tar xzf spark-2.3.0-bin-hadoop2.7.tgz -C /opt/ 第三步,配置Spark的环境变量 为了正确的运行Spark,需要设置环境变量。设置环境变量的方法如下: $ cd /opt $ sudo mv spark-2.3.0-bin-hadoop2.7 spark $ nano /etc/profile 将以下语句添加到文件末尾: export SPARK_HOME=/opt/spark export PATH=$PATH:$SPARK_HOME/bin 执行source命令,以便更改生效。 $ source /etc/profile 第四步,安装Hive on Spark2 要在Spark中使用Hive需要配置Hive on Spark2。安装Hive on Spark2可以执行以下命令: $ sudo yum install hive $ cd /opt/spark $ ./sbin/start-thriftserver.sh --master local --hiveconf hive.server2.thrift.port=10000 --hiveconf hive.server2.thrift.bind.host=localhost --hiveconf hive.server2.transport.mode=binary --hiveconf hive.server2.thrift.http.path=cliservice 第五步,使用Spark-shell 安装完Spark和配置完Hive on Spark2,可以使用Spark-shell测试配置是否正确: $ /opt/spark/bin/spark-shell --master yarn --deploy-mode client 如果没有问题,便可以在Spark上使用Hive。 总结 通过以上步骤,在CDH5上离线安装Spark2.3并配置Hive on Spark2可以成功实现。这项工作的完成让您在现有的底层设施上建立一个强大的大数据处理和分析系统。

相关推荐

Algorithm 1: The online LyDROO algorithm for solving (P1). input : Parameters V , {γi, ci}Ni=1, K, training interval δT , Mt update interval δM ; output: Control actions 􏰕xt,yt􏰖Kt=1; 1 Initialize the DNN with random parameters θ1 and empty replay memory, M1 ← 2N; 2 Empty initial data queue Qi(1) = 0 and energy queue Yi(1) = 0, for i = 1,··· ,N; 3 fort=1,2,...,Kdo 4 Observe the input ξt = 􏰕ht, Qi(t), Yi(t)􏰖Ni=1 and update Mt using (8) if mod (t, δM ) = 0; 5 Generate a relaxed offloading action xˆt = Πθt 􏰅ξt􏰆 with the DNN; 6 Quantize xˆt into Mt binary actions 􏰕xti|i = 1, · · · , Mt􏰖 using the NOP method; 7 Compute G􏰅xti,ξt􏰆 by optimizing resource allocation yit in (P2) for each xti; 8 Select the best solution xt = arg max G 􏰅xti , ξt 􏰆 and execute the joint action 􏰅xt , yt 􏰆; { x ti } 9 Update the replay memory by adding (ξt,xt); 10 if mod (t, δT ) = 0 then 11 Uniformly sample a batch of data set {(ξτ , xτ ) | τ ∈ St } from the memory; 12 Train the DNN with {(ξτ , xτ ) | τ ∈ St} and update θt using the Adam algorithm; 13 end 14 t ← t + 1; 15 Update {Qi(t),Yi(t)}N based on 􏰅xt−1,yt−1􏰆 and data arrival observation 􏰙At−1􏰚N using (5) and (7). i=1 i i=1 16 end With the above actor-critic-update loop, the DNN consistently learns from the best and most recent state-action pairs, leading to a better policy πθt that gradually approximates the optimal mapping to solve (P3). We summarize the pseudo-code of LyDROO in Algorithm 1, where the major computational complexity is in line 7 that computes G􏰅xti,ξt􏰆 by solving the optimal resource allocation problems. This in fact indicates that the proposed LyDROO algorithm can be extended to solve (P1) when considering a general non-decreasing concave utility U (rit) in the objective, because the per-frame resource allocation problem to compute G􏰅xti,ξt􏰆 is a convex problem that can be efficiently solved, where the detailed analysis is omitted. In the next subsection, we propose a low-complexity algorithm to obtain G 􏰅xti, ξt􏰆. B. Low-complexity Algorithm for Optimal Resource Allocation Given the value of xt in (P2), we denote the index set of users with xti = 1 as Mt1, and the complementary user set as Mt0. For simplicity of exposition, we drop the superscript t and express the optimal resource allocation problem that computes G 􏰅xt, ξt􏰆 as following (P4) : maximize 􏰀j∈M0 􏰕ajfj/φ − Yj(t)κfj3􏰖 + 􏰀i∈M1 {airi,O − Yi(t)ei,O} (28a) τ,f,eO,rO 17 ,基于模型的DRL算法和无优化的DRL算法和DNN深度学习都各体现在哪

最新推荐

recommend-type

ActiveMQ讲义.ppt

1. 点对点(PTP,Point-to-Point):通过消息队列(Queue)实现,生产者将消息发送到队列,消费者从队列中消费消息。每个消息只能被一个消费者接收,保证了消息的一对一传递。 2. 发布/订阅(Publish/Subscribe):...
recommend-type

Asterisk CLI 命令列表

12. agent logoff 命令:让一个座席离线 使用格式:agent logoff &lt;channel&gt; [soft] 说明:让一个座席不在登录进来,如果指定了 soft 选项,不会强行挂机退出通话。 13. agi debug 命令:启用 AGI 调试 使用格式...
recommend-type

Hardware Engineering

Hardware Engineering Resources This document provides a curated list of resources for learning about hardware engineering, including books, online courses, websites, professional organizations, and online communities. Whether you're a beginner or looking to deepen your knowledge, these resources cover a wide range of topics in hardware engineering.
recommend-type

MongoDB的Linux安装、基本操作、可视化、实验源码与报告文档.docx

安装MongoDB: 下载MongoDB的最新稳定版本,可以通过官方网站或者命令行下载。 将下载的压缩文件解压至指定目录,如 /usr/local/mongodb。 创建数据存储目录,如 /data/db,确保对该目录有读写权限。 设置环境变量:在 ~/.bashrc 或者 ~/.zshrc 文件中添加以下内容: export PATH=/usr/local/mongodb/bin:$PATH 执行命令使配置生效: source ~/.bashrc 启动MongoDB,执行以下命令: mongod 基本操作: 启动MongoDB之后,可以通过命令行连接到MongoDB实例: mongo 创建数据库: use mydatabase 创建集合并插入文档: db.mycollection.insertOne({ name: "John", age: 30 }) 查询文档: db.mycollection.find() 可视化工具: 可以使用MongoDB官方提供的可视化工具Compass,也可以使用第三方工具如Robo3T或者Studio 3T来管理Mong
recommend-type

宏基笔记本主板Acer Chromebook C730 Quanta ZHQ v1.0维修图纸

宏基笔记本主板Acer Chromebook C730 Quanta ZHQ v1.0维修图纸
recommend-type

电力电子与电力传动专业《电子技术基础》期末考试试题

"电力电子与电力传动专业《电子技术基础》期末考试题试卷(卷四)" 这份试卷涵盖了电子技术基础中的多个重要知识点,包括运放的特性、放大电路的类型、功率放大器的作用、功放电路的失真问题、复合管的运用以及集成电路LM386的应用等。 1. 运算放大器的理论: - 理想运放(Ideal Op-Amp)具有无限大的开环电压增益(A_od → ∞),这意味着它能够提供非常高的电压放大效果。 - 输入电阻(rid → ∞)表示几乎不消耗输入电流,因此不会影响信号源。 - 输出电阻(rod → 0)意味着运放能提供恒定的电压输出,不随负载变化。 - 共模抑制比(K_CMR → ∞)表示运放能有效地抑制共模信号,增强差模信号的放大。 2. 比例运算放大器: - 闭环电压放大倍数取决于集成运放的参数和外部反馈电阻的比例。 - 当引入负反馈时,放大倍数与运放本身的开环增益和反馈网络电阻有关。 3. 差动输入放大电路: - 其输入和输出电压的关系由差模电压增益决定,公式通常涉及输入电压差分和输出电压的关系。 4. 同相比例运算电路: - 当反馈电阻Rf为0,输入电阻R1趋向无穷大时,电路变成电压跟随器,其电压增益为1。 5. 功率放大器: - 通常位于放大器系统的末级,负责将较小的电信号转换为驱动负载的大电流或大电压信号。 - 主要任务是放大交流信号,并将其转换为功率输出。 6. 双电源互补对称功放(Bipolar Junction Transistor, BJT)和单电源互补对称功放(Single Supply Operational Amplifier, Op-Amp): - 双电源互补对称功放常被称为OTL电路,而单电源对称功放则称为OCL电路。 7. 交越失真及解决方法: - 在功放管之间接入偏置电阻和二极管,提供适当的偏置电流,使功放管在静态时工作在线性区,避免交越失真。 8. 复合管的电流放大系数: - 复合管的电流放大系数约等于两个组成管子的电流放大系数之乘积。 9. 复合管的构建原则: - 确保每个参与复合的管子的电流方向正确。 - 复合管的类型由参与复合的两个管子中的一种类型决定。 10. 复合管的优势与缺点: - 优点是能提高电流放大能力,增加集电极电流的负载能力。 - 缺点是热稳定性较差,可通过在第一个管子的发射极连接电阻来改善。 11. LM386集成电路: - 脚2是反相输入端,脚3是同相输入端。 - 脚1和8之间的外接元件用于调节增益和频率响应。 - 脚7通常是电源接地端。 - 脚5是一个内部电平移位器,用于设置工作电压范围。 - 脚4和6通常连接到电源的正负极。 12. 整流滤波电路: - 直流电压的稳定性受整流二极管的前向电压和滤波电容的充电/放电特性影响。 - 当二极管的前向电压变化或滤波电容的值改变时,输出直流电压会有波动。 这份试卷全面测试了学生对电子技术基础理论的理解,包括放大电路设计、运算放大器应用、功率放大器的工作原理,以及集成电路在实际电路中的运用。学生需要掌握这些概念并能灵活应用。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

VGGNet与其他深度学习模型对比:优缺点全解析,做出明智的模型选择

![VGGNet与其他深度学习模型对比:优缺点全解析,做出明智的模型选择](https://img-blog.csdnimg.cn/a02739db1463453db084046846e0549d.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5Lmd5LmF5ZGA,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. 深度学习模型概述 深度学习模型是一种强大的机器学习算法,它通过模拟人脑中的神经网络结构来学习和处理复杂数据。深度学习模
recommend-type

mysql 索引类型

MySQL中的索引类型主要有以下几种: 1. **B树索引(BTREE)**:这是最常用的索引类型,适用于大多数查询操作。B树索引的数据结构类似于一颗平衡二叉树,支持范围查询和排序。 2. **哈希索引(HASH)**:也称为散列索引,查找速度非常快,但只适用于等值查询(等于某个值),不支持范围查询。 3. **全文索引(FULLTEXT)**:用于全文本搜索,如MATCH AGAINST语句,适合于对文本字段进行复杂的搜索。 4. **空间索引(SPATIAL)**:如R-Tree,专为地理位置数据设计,支持点、线、面等几何形状的操作。 5. **唯一索引(UNIQUE)**:B树
recommend-type

电力电子技术期末考试题:电力客户与服务管理专业

"电力客户与服务管理专业《电力电子技术》期末考试题试卷(卷C)" 这份试卷涵盖了电力电子技术的基础知识,主要涉及放大电路的相关概念和分析方法。以下是试卷中的关键知识点: 1. **交流通路**:在放大器分析中,交流通路是指忽略直流偏置时的电路模型,它是用来分析交流信号通过放大器的路径。在绘制交流通路时,通常将电源电压视为短路,保留交流信号所影响的元件。 2. **放大电路的分析方法**:包括直流通路分析、交流通路分析和瞬时值图解法。直流通路关注的是静态工作点的确定,交流通路关注的是动态信号的传递。 3. **静态工作点稳定性**:当温度变化时,三极管参数会改变,可能导致放大电路静态工作点的漂移。为了稳定工作点,可以采用负反馈电路。 4. **失真类型**:由于三极管的非线性特性,会导致幅度失真,即非线性失真;而放大器对不同频率信号放大倍数的不同则可能导致频率响应失真或相位失真。 5. **通频带**:表示放大器能有效放大的频率范围,通常用下限频率fL和上限频率fH来表示,公式为fH-fL。 6. **多级放大器的分类**:包括输入级、中间级和输出级。输入级负责处理小信号,中间级提供足够的电流驱动能力,输出级则要满足负载的需求。 7. **耦合方式**:多级放大电路间的耦合有直接耦合、阻容耦合和变压器耦合,每种耦合方式有其特定的应用场景。 8. **交流和直流信号放大**:若需要同时放大两者,通常选用直接耦合的方式。 9. **输入和输出电阻**:多级放大电路的输入电阻等于第一级的输入电阻,输出电阻等于最后一级的输出电阻。总电压放大倍数是各级放大倍数的乘积。 10. **放大器的基本组合状态**:包括共基放大、共集放大(又称射极跟随器)和共源放大。共集放大电路的电压放大倍数接近于1,但具有高输入电阻和低输出电阻的特性。 11. **场效应管的工作区域**:场效应管的输出特性曲线有截止区、饱和区和放大区。在放大区,场效应管可以作为放大器件使用。 12. **场效应管的控制机制**:场效应管利用栅极-源极间的电场来控制漏极-源极间的电流,因此被称为电压控制型器件。根据结构和工作原理,场效应管分为结型场效应管和绝缘栅型场效应管(MOSFET)。 13. **场效应管的电极**:包括源极(Source)、栅极(Gate)和漏极(Drain)。 14. **混合放大电路**:场效应管与晶体三极管结合可以构成各种类型的放大电路,如互补对称电路(如BJT的差分对电路)和MOSFET的MOS互补电路等。 这些知识点是电力电子技术中的基础,对于理解和设计电子电路至关重要。