import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, Dataset class ConvNet(nn.Module): def __init__(self): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3, stride=1, padding=1) self.relu = nn.ReLU() self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(32 * 14 * 14, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = self.relu(x) x = self.pool(x) x = x.view(-1, 32 * 14 * 14) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) return x class MyDataset(Dataset): def __init__(self, data, target): self.data = data self.target = target def __getitem__(self, index): x = self.data[index] y = self.target[index] return x, y def __len__(self): return len(self.data) # 定义一些超参数 batch_size = 32 learning_rate = 0.001 epochs = 10 # 加载数据集 train_data = torch.randn(1000, 1, 28, 28) print(train_data) train_target = torch.randint(0, 10, (1000,)) print(train_target) train_dataset = MyDataset(train_data, train_target) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) # 构建模型 model = ConvNet() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 for epoch in range(epochs): for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() if batch_idx % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) # 保存模型 # torch.save(model.state_dict(), 'convnet.pth')
时间: 2024-04-27 18:23:04 浏览: 169
这段代码是一个简单的卷积神经网络(ConvNet)在MNIST数据集上进行训练的代码。代码中定义了一个ConvNet类,它包含一个卷积层、ReLU激活函数、池化层和两个全连接层。同时,代码还定义了一个MyDataset类来加载数据集,以及一个DataLoader类来管理数据的批量处理。训练过程中使用了交叉熵损失函数和Adam优化器,将模型在数据集上训练了10个epochs。最后,代码还注释了一行保存模型的代码,可以将训练好的模型保存在本地。
相关问题
import torch import torch.nn.functional as F import torch.optim as optim from torchvision import transforms from torchvision import datasets from torch.utils. data import DataI oader 补全代码
下面是一个基本的 PyTorch MNIST 数据集训练代码示例,包括数据加载、模型定义、优化器和损失函数的定义以及训练过程。
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
# 定义数据预处理
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# 加载数据集
train_dataset = datasets.MNIST('data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST('data', train=False, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
net = Net()
# 定义优化器和损失函数
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.5)
criterion = nn.CrossEntropyLoss()
# 训练模型
def train(epoch):
net.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = net(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 10 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test():
net.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = net(data)
test_loss += criterion(output, target)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
for epoch in range(1, 5):
train(epoch)
test()
这是一个简单的卷积神经网络模型,用于对 MNIST 手写数字进行分类。训练过程中使用了交叉熵损失函数和随机梯度下降优化器。
import torch import torch.nn as nn import torch.optim as optim import torchvision # datasets and pretrained neural nets import torch.utils.data import torch.nn.functional as F import torchvision.transforms as transforms transform = transforms.Compose([transforms.ToTensor(), ]) trainset = torchvision.datasets.MNIST(root='.\mydata', train=True, download=True, transform=transform) #文件夹地址可自定义 testset = torchvision.datasets.MNIST(root='.\mydata', train=False, download=True, transform=transform) #文件夹地址可自定义 trainloader = torch.utils.data.DataLoader(trainset, batch_size =32, shuffle=True) testloader = torch.utils.data.DataLoader(testset, batch_size=32, shuffle=False)写一个构建网络定义损失函数,优化器训练 迭代次数为10次 模型评测尝试将数据集更改为FashionMNIST或者CIFIR10再训练模型,或对比卷积神经网络和全连接神经网络模型的预测准确度,或尝试数据增强方法的代码
好的,这里是一个简单的代码示例,包括构建网络、定义损失函数、优化器、训练和评估模型的步骤。同时,也包括了针对FashionMNIST数据集和CIFAR10数据集的代码,以及卷积神经网络和全连接神经网络模型的比较,以及数据增强方法的代码。
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torch.utils.data
import torch.nn.functional as F
import torchvision.transforms as transforms
# 数据集选项
dataset = 'MNIST' # 可以选择'MNIST', 'FashionMNIST'或者'CIFAR10'
data_root = './data' # 数据集存储的文件夹地址
# 构建网络
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(28 * 28, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = x.view(-1, 28 * 28)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# 定义损失函数和优化器
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 加载数据集
if dataset == 'MNIST':
trainset = torchvision.datasets.MNIST(root=data_root, train=True, download=True, transform=transforms.ToTensor())
testset = torchvision.datasets.MNIST(root=data_root, train=False, download=True, transform=transforms.ToTensor())
elif dataset == 'FashionMNIST':
trainset = torchvision.datasets.FashionMNIST(root=data_root, train=True, download=True, transform=transforms.ToTensor())
testset = torchvision.datasets.FashionMNIST(root=data_root, train=False, download=True, transform=transforms.ToTensor())
elif dataset == 'CIFAR10':
trainset = torchvision.datasets.CIFAR10(root=data_root, train=True, download=True, transform=transforms.ToTensor())
testset = torchvision.datasets.CIFAR10(root=data_root, train=False, download=True, transform=transforms.ToTensor())
else:
raise ValueError('Invalid dataset name')
trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True)
testloader = torch.utils.data.DataLoader(testset, batch_size=32, shuffle=False)
# 训练模型
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
print('Finished Training')
# 评估模型
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))
针对FashionMNIST数据集和CIFAR10数据集的代码仅需要改变数据集的名称和地址即可。卷积神经网络和全连接神经网络模型的比较可以使用以下代码:
# 定义卷积神经网络
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=5, padding=2)
self.conv2 = nn.Conv2d(16, 32, kernel_size=5, padding=2)
self.fc1 = nn.Linear(32 * 7 * 7, 256)
self.fc2 = nn.Linear(256, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2)
x = x.view(-1, 32 * 7 * 7)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# 定义全连接神经网络
class FCNet(nn.Module):
def __init__(self):
super(FCNet, self).__init__()
self.fc1 = nn.Linear(28 * 28, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = x.view(-1, 28 * 28)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
if dataset == 'MNIST' or dataset == 'FashionMNIST':
net = FCNet()
elif dataset == 'CIFAR10':
net = ConvNet()
else:
raise ValueError('Invalid dataset name')
# 训练和评估模型的代码和之前相同
最后,以下是数据增强的代码示例,可以在训练数据集上应用随机的图像变换,从而增加数据集的多样性和泛化性能。
# 数据增强
train_transform = transforms.Compose([
transforms.RandomCrop(28, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
trainset = torchvision.datasets.MNIST(root=data_root, train=True, download=True, transform=train_transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True)
# 训练模型的代码和之前相同
需要注意的是,在评估模型时,不应该使用数据增强,因为这会导致测试结果不准确。
相关推荐

















