图片识别迁移学习mmd代码
时间: 2024-03-10 18:41:41 浏览: 176
图片识别迁移学习是一种利用已经训练好的模型在新的任务上进行微调的方法。MMD(Maximum Mean Discrepancy)是一种用于度量两个概率分布之间差异的方法。下面是一个使用迁移学习和MMD的图片识别代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import models, datasets, transforms
from torch.utils.data import DataLoader
# 加载预训练模型
model = models.resnet50(pretrained=True)
num_features = model.fc.in_features
model.fc = nn.Linear(num_features, num_classes)
# 数据预处理
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
}
# 加载数据集
data_dir = 'path_to_dataset'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
dataloaders = {x: DataLoader(image_datasets[x], batch_size=32, shuffle=True, num_workers=4) for x in ['train', 'val']}
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# 迁移学习训练
def train_model(model, criterion, optimizer, num_epochs=10):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
best_acc = 0.0
for epoch in range(num_epochs):
for phase in ['train', 'val']:
if phase == 'train':
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(image_datasets[phase])
epoch_acc = running_corrects.double() / len(image_datasets[phase])
print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
return model
# 训练模型
model = train_model(model, criterion, optimizer, num_epochs=10)
```
这段代码使用了ResNet-50作为预训练模型,并在最后一层添加了一个全连接层进行分类。数据集的预处理包括随机裁剪、水平翻转和归一化操作。训练过程中使用交叉熵损失函数和随机梯度下降优化器进行模型训练。在训练过程中,会输出每个epoch的训练集和验证集的损失和准确率。
阅读全文