svm实现鸢尾花分类matlab
时间: 2024-06-03 18:05:08 浏览: 175
SVM(Support Vector Machine)是一种常用的机器学习算法,它可以用于分类、回归和异常检测等任务。而鸢尾花数据集是机器学习中经典的数据集之一,它包含了3种鸢尾花的4个特征值,共计150条数据。
在MATLAB中,实现鸢尾花分类可以遵循以下步骤:
1. 加载数据:使用MATLAB自带的load函数加载鸢尾花数据集。
2. 数据预处理:将数据集分为训练集和测试集,并对特征进行标准化处理。
3. 模型训练:使用fitcsvm函数训练SVM模型,其中需要指定核函数类型和相关参数。
4. 模型评估:使用predict函数对测试集进行预测,并计算分类准确率等评估指标。
下面是一份简单的MATLAB代码示例:
```
% 加载鸢尾花数据集
load fisheriris;
% 将数据集分为训练集和测试集
trainData = [meas(1:40,:); meas(51:90,:); meas(101:140,:)];
testData = [meas(41:50,:); meas(91:100,:); meas(141:150,:)];
% 对特征进行标准化处理
trainDataNorm = zscore(trainData);
testDataNorm = zscore(testData);
% 构建SVM模型
svmModel = fitcsvm(trainDataNorm, [ones(80,1); -ones(80,1)], 'KernelFunction', 'rbf', 'BoxConstraint', 1, 'KernelScale', 1);
% 对测试集进行预测,并计算分类准确率
[predictLabel,score] = predict(svmModel, testDataNorm);
accuracy = sum(predictLabel == [ones(10,1); -ones(10,1); ones(10,1)]) / numel(predictLabel);
disp(['Classification Accuracy: ', num2str(accuracy)]);
```
阅读全文