用python代码解决问题二
时间: 2024-09-05 20:05:01 浏览: 40
解决python中无法自动补全代码的问题
5星 · 资源好评率100%
首先,为了解决问题二,我们需要创建一个简单的Python脚本来帮助做出决策。我们将编写函数来估算各种决策的成本和可能的结果。以下是代码的一个基础框架:
```python
import numpy as np
# 定义函数,计算成本和收益
def calculate_costs_and_benefits(situations, detect_zero_part, detect_final_product, recycle):
costs = {}
for i, situation in enumerate(situations):
# 零部件1和2的价格
part1_price, part2_price = situation['price']
# 成本计算
if detect_zero_part[i]:
# 检测零配件1的成本
part1_detection_cost = situation['detection_cost'][0]
# 检测零配件2的成本
part2_detection_cost = situation['detection_cost'][1]
total_detection_cost = part1_detection_cost + part2_detection_cost
part1_rejected_rate = situation['reject_rate'][0]
part2_rejected_rate = situation['reject_rate'][1]
# 如果零配件都未检测,则直接进入装配
if not detect_zero_part[i]:
part1_rejected_rate *= 0
part2_rejected_rate *= 0
# 成品检测成本
final_detection_cost = situation['final_detection_cost'] * (part1_rejected_rate or part2_rejected_rate)
# 成品成本包括装配和最终检测
production_cost = situation['assembly_cost'] + final_detection_cost
costs[f'Situation {i}'] = {
'production_cost': production_cost,
'market_value': situation['market_value'],
'recycling_cost': recycle[i] * production_cost if recycle[i] else 0,
'total_cost': production_cost + recycling_cost
}
else:
production_cost = situation['assembly_cost'] + situation['final_detection_cost']
costs[f'Situation {i}'] = {
'production_cost': production_cost,
'market_value': situation['market_value'],
'recycling_cost': 0,
'total_cost': production_cost
}
return costs
# 表1的数据
situations = [
{"price": (4, 2), "detection_cost": (2, 1), "reject_rate": (0.1, 0.1), "assembly_cost": 6, "final_detection_cost": 3, "market_value": 56, "recycle": 1},
# 其他情况...
]
detect_zero_part = [True, False, True, False, True] # 是否检测零配件
detect_final_product = [True, True, True, True, True] # 是否检测成品
recycle = [False, True, True, True, False] # 是否拆解并再利用
costs = calculate_costs_and_benefits(situations, detect_zero_part, detect_final_product, recycle)
for key, value in costs.items():
print(f"Situation {key}:")
print(f"\tTotal Cost: {value['total_cost']}")
print(f"\tMarket Value: {value['market_value']}")
print("\n")
# 你可以根据成本计算结果调整检测策略
```
这个代码只是一个基本的示例,你还需要根据具体情况调整输入参数,比如不同情况的具体数值。此外,你还可以增加更复杂的决策规则,如使用线性规划或动态规划算法来找到全局最优解。
阅读全文