spyder的模型训练代码
时间: 2024-10-25 09:10:43 浏览: 16
大模型简历模板之cv简历模板3.docx
Spyder是一个集成开发环境(IDE),主要用于科学计算和数据分析,特别是与Python语言结合。在Spyder中进行模型训练,通常涉及到深度学习库如TensorFlow或PyTorch。下面是一个简单的例子,展示如何使用PyTorch在Spyder中训练一个线性回归模型:
```python
# 导入所需库
import torch
import torch.nn as nn
from sklearn.model_selection import train_test_split
# 假设我们有数据集
data = ... # 填充你的数据和标签
X_train, X_test, y_train, y_test = train_test_split(data['features'], data['labels'], test_size=0.2)
# 定义模型
class LinearRegression(nn.Module):
def __init__(self, input_dim):
super(LinearRegression, self).__init__()
self.linear = nn.Linear(input_dim, 1)
def forward(self, x):
return self.linear(x)
model = LinearRegression(X_train.shape[1])
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# 训练循环
for epoch in range(num_epochs):
model.train() # 将模式设置为训练
optimizer.zero_grad() # 清零梯度
outputs = model(X_train)
loss = criterion(outputs, y_train)
loss.backward() # 反向传播
optimizer.step() # 更新权重
# 评估模型
model.eval()
with torch.no_grad():
predictions = model(X_test)
mse = criterion(predictions, y_test)
print(f"Epoch {epoch + 1}: Loss = {mse.item()}")
阅读全文