ca注意力机制网络结构
时间: 2023-11-20 21:56:42 浏览: 34
CA(Coordinate Attention)注意力机制是一种轻量级的注意力机制,可以用于卷积神经网络中。它通过对特征图的坐标信息进行建模,来增强特征图的表达能力。下面是一个使用CA注意力机制的网络结构的示例代码:
```python
import torch
import torch.nn as nn
class CA_Block(nn.Module):
def __init__(self, in_channels, reduction_ratio=16):
super(CA_Block, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(in_channels, in_channels // reduction_ratio, 1, bias=False)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(in_channels // reduction_ratio, in_channels, 1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.fc2(self.relu(self.fc1(self.avg_pool(x))))
max_out = self.fc2(self.relu(self.fc1(self.max_pool(x))))
out = avg_out + max_out
return self.sigmoid(out) * x
class CA_Net(nn.Module):
def __init__(self, num_classes=10):
super(CA_Net, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.ca1 = CA_Block(64)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(128)
self.ca2 = CA_Block(128)
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(256)
self.ca3 = CA_Block(256)
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Linear(256, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.ca1(x)
x = nn.functional.relu(x)
x = nn.functional.max_pool2d(x, 2)
x = self.conv2(x)
x = self.bn2(x)
x = self.ca2(x)
x = nn.functional.relu(x)
x = nn.functional.max_pool2d(x, 2)
x = self.conv3(x)
x = self.bn3(x)
x = self.ca3(x)
x = nn.functional.relu(x)
x = self.avg_pool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
在这个网络结构中,CA_Block是CA注意力机制的实现,CA_Net是整个网络的结构。其中,CA_Block包含了两个分支,一个是对特征图进行平均池化,另一个是对特征图进行最大池化,然后将两个分支的结果相加,再通过一个sigmoid函数进行归一化,最后与原始特征图相乘得到增强后的特征图。在CA_Net中,每个卷积层后面都跟着一个CA_Block,用于增强特征图的表达能力。
相关推荐
















