shape = 0.782178018281554 scale = 0.02012987846163316 用这两个参数画出威布尔分布的图像
时间: 2024-04-11 08:33:29 浏览: 99
当使用shape和scale参数来绘制威布尔分布的图像时,可以使用Python中的SciPy库来完成。下面是使用这两个参数绘制威布尔分布图像的示例代码:
```python
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import weibull_min
shape = 0.782178018281554
scale = 0.02012987846163316
x = np.linspace(0, 10, 100)
y = weibull_min.pdf(x, shape, scale)
plt.plot(x, y)
plt.xlabel('x')
plt.ylabel('Probability Density')
plt.title('Weibull Distribution')
plt.grid(True)
plt.show()
```
以上代码将生成一个威布尔分布的概率密度函数图像,其中x轴表示变量的取值,y轴表示对应取值的概率密度。
请注意,这里的示例代码假设x的取值范围为0到10,你可以根据实际需求调整x的范围。
相关问题
Months-in-service Year of Production Date Running Sum of RateCalculated 2 2022 6.79E-05 4 2022 0.000203569 5 2022 0.000339282 7 2022 0.000407138 1 2021 3.84E-05 2 2021 0.000567183 3 2021 0.000794814 4 2021 0.001301464 5 2021 0.001904045 6 2021 0.002157183 7 2021 0.002394334 8 2021 0.002753294 9 2021 0.003121773 10 2021 0.0033909 11 2021 0.003506241 12 2021 0.003528699 13 2021 0.003720933 14 2021 0.003781838 15 2021 0.003820284 16 2021 0.003897178 17 2021 0.00399653 18 2021 0.00411187 19 2021 0.004365009 20 2021 0.004464361 import numpy as np import matplotlib.pyplot as plt from scipy.stats import weibull_min # 计算威布尔分布参数的最大似然估计 shape, loc, scale = weibull_min.fit(df1["Running Sum of RateCalculated"]) # 绘制威布尔分布的函数 x = np.linspace(0, max(df1["Months-in-service"]), 10) y = weibull_min.cdf(x, shape, loc, scale) plt.plot(x, y) plt.xlabel('Months-in-service') plt.ylabel('Running Sum of RateCalculated') plt.title('Weibull Distribution') plt.grid(True) plt.show() 这段代码 让x轴变成Months-in-service, y轴变成Running Sum of RateCalculated
非常抱歉,我之前的回答有误。威布尔分布的函数应该是在 x 轴表示 Running Sum of RateCalculated,y 轴表示概率密度。以下是修正后的示例代码:
```python
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import weibull_min
# 原始数据
months_in_service = [2, 4, 5, 7, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
running_sum_of_rate = [6.79E-05, 0.000203569, 0.000339282, 0.000407138, 3.84E-05, 0.000567183,
0.000794814, 0.001301464, 0.001904045, 0.002157183, 0.002394334,
0.002753294, 0.003121773, 0.0033909, 0.003506241, 0.003528699,
0.003720933, 0.003781838, 0.003820284, 0.003897178,
0.00399653, 0.00411187, 0.004365009, 0.004464361]
# 计算威布尔分布参数的最大似然估计
shape, loc, scale = weibull_min.fit(running_sum_of_rate)
# 绘制威布尔分布的函数
x = np.linspace(min(running_sum_of_rate), max(running_sum_of_rate), 1000)
y = weibull_min.pdf(x, shape, loc, scale)
plt.plot(x, y)
plt.xlabel('Running Sum of RateCalculated')
plt.ylabel('Probability Density')
plt.title('Weibull Distribution')
plt.grid(True)
plt.show()
```
这段代码将绘制一个威布尔分布的图像,其中横轴表示 Running Sum of RateCalculated,纵轴表示概率密度。希望对您有帮助!
Months-in-service Year of Production Date Running Sum of RateCalculated 2 2022 6.79E-05 4 2022 0.000203569 5 2022 0.000339282 7 2022 0.000407138 1 2021 3.84E-05 2 2021 0.000567183 3 2021 0.000794814 4 2021 0.001301464 5 2021 0.001904045 6 2021 0.002157183 7 2021 0.002394334 8 2021 0.002753294 9 2021 0.003121773 10 2021 0.0033909 11 2021 0.003506241 12 2021 0.003528699 13 2021 0.003720933 14 2021 0.003781838 15 2021 0.003820284 16 2021 0.003897178 17 2021 0.00399653 18 2021 0.00411187 19 2021 0.004365009 20 2021 0.004464361 这个列表中用Months-in-service和Running Sum of RateCalculated这两列计算最大似然估计的威布尔分布的参数并画出威布尔分布的函数
要计算最大似然估计的威布尔分布参数,您可以使用SciPy库中的`weibull_min.fit`函数。以下是一个示例代码:
```python
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import weibull_min
# 原始数据
months_in_service = [2, 4, 5, 7, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
running_sum_of_rate = [6.79E-05, 0.000203569, 0.000339282, 0.000407138, 3.84E-05, 0.000567183,
0.000794814, 0.001301464, 0.001904045, 0.002157183, 0.002394334,
0.002753294, 0.003121773, 0.0033909, 0.003506241, 0.003528699,
0.003720933, 0.003781838, 0.003820284, 0.003897178,
0.00399653, 0.00411187, 0.004365009, 0.004464361]
# 计算威布尔分布参数的最大似然估计
shape, loc, scale = weibull_min.fit(running_sum_of_rate)
# 绘制威布尔分布的函数
x = np.linspace(0, max(running_sum_of_rate), 1000)
y = weibull_min.pdf(x, shape, loc, scale)
plt.plot(x, y)
plt.xlabel('Running Sum of Rate')
plt.ylabel('Probability Density')
plt.title('Weibull Distribution')
plt.grid(True)
plt.show()
```
运行这段代码将得到威布尔分布的图像,其中横轴表示 Running Sum of Rate,纵轴表示概率密度。请注意,`weibull_min.fit`函数返回的参数顺序为`(shape, loc, scale)`。您可以根据需要调整原始数据和图像的标题等参数。希望对您有帮助!
阅读全文