回归分析数学建模Python
时间: 2024-06-14 14:02:53 浏览: 149
回归分析 数学建模
回归分析是一种统计方法,用于研究两个或多个变量之间的关系,其中自变量(输入变量)试图预测因变量(输出变量)。在数学建模和Python中,我们通常使用`scikit-learn`库来进行回归任务,如线性回归、岭回归、Lasso回归等。
Python中的回归分析步骤如下:
1. 导入所需的库:
```python
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import metrics
```
2. 加载数据(假设是pandas DataFrame):
```python
data = pd.read_csv('your_dataset.csv')
```
3. 数据预处理(特征缩放、缺失值处理等):
```python
X = data.drop('target_column', axis=1) # 自变量
y = data['target_column'] # 因变量
```
4. 划分训练集和测试集:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
5. 创建并训练模型:
```python
model = LinearRegression()
model.fit(X_train, y_train)
```
6. 预测和评估:
```python
y_pred = model.predict(X_test)
mse = metrics.mean_squared_error(y_test, y_pred)
r2_score = metrics.r2_score(y_test, y_pred)
```
阅读全文