opencv-python 凸出来的轮廓
时间: 2023-12-10 14:35:27 浏览: 203
凸出来的轮廓是指在图像中,由一些点组成的轮廓,这些点组成的多边形是凸多边形。在OpenCV中,可以通过cv2.convexHull函数来寻找凸包,得到的近似也是凸的。下面是一个例子:
```python
import cv2
import numpy as np
# 读取图像
img = cv2.imread('example.jpg')
# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 二值化
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
# 寻找轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# 寻找凸包
hull = cv2.convexHull(contours[0])
# 绘制凸包
cv2.drawContours(img, [hull], -1, (0, 0, 255), 2)
# 显示图像
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
相关问题
opencv-python实现手势识别手指的个数
要实现手势识别手指的个数,可以使用OpenCV-Python的图像处理和计算机视觉功能。以下是实现手势识别手指的个数的一般步骤:
1. 读取视频或摄像头捕捉的图像。
2. 对图像进行预处理,如去噪、二值化等。
3. 找到手部轮廓。
4. 检测手指。
5. 计算手指的个数。
下面是一个简单的代码示例,可以识别手掌并计算手指的个数:
```python
import cv2
import numpy as np
# 定义HSV颜色范围
lower_skin = np.array([0, 20, 70], dtype=np.uint8)
upper_skin = np.array([20, 255, 255], dtype=np.uint8)
cap = cv2.VideoCapture(0)
while True:
# 读取视频帧
ret, frame = cap.read()
# 转换为HSV颜色空间
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# 提取皮肤颜色区域
mask = cv2.inRange(hsv, lower_skin, upper_skin)
# 去噪
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
# 找到轮廓
contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# 找到最大轮廓
if len(contours) > 0:
max_contour = max(contours, key=cv2.contourArea)
# 找到凸包
hull = cv2.convexHull(max_contour, returnPoints=False)
# 找到凸缺陷
defects = cv2.convexityDefects(max_contour, hull)
# 计算手指的个数
finger_count = 0
if defects is not None:
for i in range(defects.shape[0]):
s, e, f, d = defects[i][0]
start = tuple(max_contour[s][0])
end = tuple(max_contour[e][0])
far = tuple(max_contour[f][0])
# 计算手指长度
a = np.sqrt((end[0] - start[0])**2 + (end[1] - start[1])**2)
b = np.sqrt((far[0] - start[0])**2 + (far[1] - start[1])**2)
c = np.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2)
angle = np.arccos((b**2 + c**2 - a**2) / (2*b*c))
# 如果角度小于90度,则为手指
if angle < np.pi/2:
finger_count += 1
# 在图像上绘制手指个数
cv2.putText(frame, str(finger_count), (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)
# 显示结果
cv2.imshow('frame', frame)
# 按下q键退出
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放视频捕获对象和销毁所有窗口
cap.release()
cv2.destroyAllWindows()
```
这个代码示例使用肤色检测和凸缺陷检测来识别手指的个数。检测到轮廓后,使用`cv2.convexHull`函数找到凸包,然后使用`cv2.convexityDefects`函数找到凸缺陷。对于每个凸缺陷,计算相应的角度,并将其视为手指。最后,在图像上绘制手指个数。
opencv-python在一定区域内实现手势识别手指的个数完整代码
下面是一个完整的OpenCV-Python代码示例,可以在特定区域内实现手势识别手指的个数:
```python
import cv2
import numpy as np
# 定义HSV颜色范围
lower_skin = np.array([0, 20, 70], dtype=np.uint8)
upper_skin = np.array([20, 255, 255], dtype=np.uint8)
# 定义手势检测区域
x, y, w, h = 200, 200, 200, 200
cap = cv2.VideoCapture(0)
while True:
# 读取视频帧
ret, frame = cap.read()
# 转换为HSV颜色空间
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# 提取皮肤颜色区域
mask = cv2.inRange(hsv, lower_skin, upper_skin)
# 去噪
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
# 找到轮廓
contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# 找到最大轮廓
if len(contours) > 0:
max_contour = max(contours, key=cv2.contourArea)
area = cv2.contourArea(max_contour)
# 如果手势区域的面积大于一定阈值,才进行手势识别
if area > 10000:
# 找到手势区域
x1, y1, w1, h1 = cv2.boundingRect(max_contour)
# 如果手势区域在特定区域内,才进行手势识别
if x1 > x and y1 > y and x1+w1 < x+w and y1+h1 < y+h:
# 找到凸包
hull = cv2.convexHull(max_contour, returnPoints=False)
# 找到凸缺陷
defects = cv2.convexityDefects(max_contour, hull)
# 计算手指的个数
finger_count = 0
if defects is not None:
for i in range(defects.shape[0]):
s, e, f, d = defects[i][0]
start = tuple(max_contour[s][0])
end = tuple(max_contour[e][0])
far = tuple(max_contour[f][0])
# 计算手指长度
a = np.sqrt((end[0] - start[0])**2 + (end[1] - start[1])**2)
b = np.sqrt((far[0] - start[0])**2 + (far[1] - start[1])**2)
c = np.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2)
angle = np.arccos((b**2 + c**2 - a**2) / (2*b*c))
# 如果角度小于90度,则为手指
if angle < np.pi/2:
finger_count += 1
# 在手势区域上绘制手指个数
cv2.putText(frame, str(finger_count), (x1, y1-20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
# 显示结果
cv2.imshow('frame', frame)
# 按下q键退出
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放视频捕获对象和销毁所有窗口
cap.release()
cv2.destroyAllWindows()
```
这个代码示例使用肤色检测和凸缺陷检测来识别手指的个数。检测到轮廓后,找到手势区域,如果手势区域在特定区域内,就进行手势识别。计算手指个数后,在手势区域上绘制手指个数。
阅读全文