帮我写一个BP神经网络的编码,输出神经网络的准确度
时间: 2024-05-31 17:05:29 浏览: 59
神经网络BP代码
好的,以下是一个简单的BP神经网络的编码示例:
```
import numpy as np
class BPNN:
def __init__(self, input_size, hidden_size, output_size, learning_rate):
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.learning_rate = learning_rate
# 初始化权重和偏置
self.weights1 = np.random.randn(self.input_size, self.hidden_size)
self.bias1 = np.zeros((1, self.hidden_size))
self.weights2 = np.random.randn(self.hidden_size, self.output_size)
self.bias2 = np.zeros((1, self.output_size))
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def sigmoid_derivative(self, x):
return x * (1 - x)
def forward(self, inputs):
# 计算隐藏层输出
self.hidden_layer_output = self.sigmoid(np.dot(inputs, self.weights1) + self.bias1)
# 计算输出层输出
self.output_layer_output = self.sigmoid(np.dot(self.hidden_layer_output, self.weights2) + self.bias2)
return self.output_layer_output
def backward(self, inputs, targets):
# 计算输出层误差
output_layer_error = targets - self.output_layer_output
output_layer_delta = output_layer_error * self.sigmoid_derivative(self.output_layer_output)
# 计算隐藏层误差
hidden_layer_error = np.dot(output_layer_delta, self.weights2.T)
hidden_layer_delta = hidden_layer_error * self.sigmoid_derivative(self.hidden_layer_output)
# 更新权重和偏置
self.weights2 += np.dot(self.hidden_layer_output.T, output_layer_delta) * self.learning_rate
self.bias2 += np.sum(output_layer_delta, axis=0, keepdims=True) * self.learning_rate
self.weights1 += np.dot(inputs.T, hidden_layer_delta) * self.learning_rate
self.bias1 += np.sum(hidden_layer_delta, axis=0, keepdims=True) * self.learning_rate
def train(self, inputs, targets, epochs):
for i in range(epochs):
# 前向传播计算输出
outputs = self.forward(inputs)
# 反向传播更新权重和偏置
self.backward(inputs, targets)
# 计算损失函数
loss = np.mean(np.square(targets - outputs))
# 输出训练进度和损失函数值
if i % 1000 == 0:
print("Epochs:", i, " Loss:", loss)
def predict(self, inputs):
# 预测输出结果
return self.forward(inputs)
```
以上代码实现了一个包含一个隐藏层的BP神经网络。你可以根据自己的需求修改输入层、隐藏层和输出层的大小,以及学习率等超参数。在训练完成后,你可以使用该神经网络进行预测,并且计算准确度。
具体来说,你可以使用一组测试数据进行预测,并将预测结果与真实结果进行对比,计算准确率。其中,准确率可用如下公式计算:
```
accuracy = (正确预测的样本数) / (总样本数)
```
当然,这里的准确率仅适用于分类问题,对于回归问题需要使用其他指标来衡量模型的准确度。
阅读全文