定时器0中断服务程序 void timer0_ISR() interrupt 1 { TH0 = (65536 - freq[counter]) / 256; TL0 = (65536 - freq[counter]) % 256; BEEP_PIN = ~BEEP_PIN; // 切换蜂鸣器引脚状态 }

时间: 2024-04-13 11:30:31 浏览: 40
根据提供的代码,定时器0中断服务程序的伪代码如下所示: ```c void timer0_ISR() interrupt 1 { // 计算 TH0 和 TL0 的值 unsigned int th0_value = (65536 - freq[counter]) / 256; unsigned int tl0_value = (65536 - freq[counter]) % 256; // 更新 TH0 和 TL0 的值 TH0 = th0_value; TL0 = tl0_value; // 切换蜂鸣器引脚状态 BEEP_PIN = ~BEEP_PIN; } ``` 在该中断服务程序中,首先计算出 TH0 和 TL0 的值,然后使用计算出的值更新对应的寄存器。最后,切换蜂鸣器引脚状态。 请注意,这是伪代码,并不是完整的可编译代码。具体的实现可能会根据您的硬件平台和编程语言而有所不同。请根据您的实际需求进行相应的调整和实现。
相关问题

#include <reg52.h>#include <stdio.h>#define FREQ 11059200UL#define BAUD_RATE 9600#define TIMER0_RELOAD_VALUE 256 - FREQ / 12 / BAUD_RATEsbit D1 = P1 ^ 0;sbit D2 = P1 ^ 1;sbit D3 = P1 ^ 2;sbit D4 = P1 ^ 3;sbit D5 = P1 ^ 4;sbit D6 = P1 ^ 5;sbit D7 = P1 ^ 6;sbit D8 = P1 ^ 7;void init_timer0();void init_uart();void send_string(char *str);void update_display();volatile unsigned char ms_counter;volatile unsigned char display_buffer[8];volatile char uart_buffer[20];volatile unsigned char uart_buffer_index;void main() { init_timer0(); init_uart(); while (1) { update_display(); }}void init_timer0() { TMOD |= 0x01; TH0 = TIMER0_RELOAD_VALUE; TL0 = TIMER0_RELOAD_VALUE; TR0 = 1; ET0 = 1; EA = 1;}void init_uart() { TMOD |= 0x20; SCON = 0x50; TH1 = 0xfd; TL1 = 0xfd; TR1 = 1; ES = 1;}void send_string(char *str) { while (*str) { SBUF = *str++; while (!TI); TI = 0; }}void update_display() { // TODO: 更新时钟显示内容 // 将时钟内容转换为字符串格式,存储到 uart_buffer 中 // 例如:sprintf(uart_buffer, "%02d:%02d:%02d", hour, minute, second); send_string(uart_buffer);}void timer0_isr() interrupt 1 { TH0 = TIMER0_RELOAD_VALUE; TL0 = TIMER0_RELOAD_VALUE; ms_counter++; if (ms_counter == 10) { ms_counter = 0; update_display(); }}void uart_isr() interrupt 4 { if (RI) { RI = 0; uart_buffer[uart_buffer_index++] = SBUF; if (uart_buffer_index >= sizeof(uart_buffer)) { uart_buffer_index = 0; } }}对上面代码逐句解析

好的,让我逐句解析一下这段代码。 ```c #include <reg52.h> #include <stdio.h> ``` 这两行代码引入了头文件 `reg52.h` 和 `stdio.h`,前者是 8051 系列单片机的头文件,后者是标准 C 语言的输入输出库。 ```c #define FREQ 11059200UL #define BAUD_RATE 9600 #define TIMER0_RELOAD_VALUE 256 - FREQ / 12 / BAUD_RATE ``` 这三行代码定义了一些常量,包括时钟频率、波特率和定时器 0 的重载值。这些常量将在后面的代码中用到。 ```c sbit D1 = P1 ^ 0; sbit D2 = P1 ^ 1; sbit D3 = P1 ^ 2; sbit D4 = P1 ^ 3; sbit D5 = P1 ^ 4; sbit D6 = P1 ^ 5; sbit D7 = P1 ^ 6; sbit D8 = P1 ^ 7; ``` 这八行代码定义了八个数码管的位选端口,即 P1 口的 0 到 7 号位。 ```c void init_timer0(); void init_uart(); void send_string(char *str); void update_display(); ``` 这四行代码声明了四个函数,分别用于初始化定时器 0、初始化串口、发送字符串到串口和更新数码管显示内容。 ```c volatile unsigned char ms_counter; volatile unsigned char display_buffer[8]; volatile char uart_buffer[20]; volatile unsigned char uart_buffer_index; ``` 这四行代码定义了一些全局变量,包括毫秒计数器、数码管显示缓冲区、串口接收缓冲区和串口接收缓冲区索引。 ```c void main() { init_timer0(); init_uart(); while (1) { update_display(); } } ``` 这个 `main()` 函数是程序的入口,首先调用 `init_timer0()` 和 `init_uart()` 函数分别初始化定时器 0 和串口,然后进入一个死循环,在循环中不断调用 `update_display()` 函数更新数码管显示内容。 ```c void init_timer0() { TMOD |= 0x01; TH0 = TIMER0_RELOAD_VALUE; TL0 = TIMER0_RELOAD_VALUE; TR0 = 1; ET0 = 1; EA = 1; } ``` 这个函数用于初始化定时器 0,将其设置为模式 1(16 位定时器),并设置重载值。然后启动定时器 0 并开启定时器 0 中断和总中断。 ```c void init_uart() { TMOD |= 0x20; SCON = 0x50; TH1 = 0xfd; TL1 = 0xfd; TR1 = 1; ES = 1; } ``` 这个函数用于初始化串口,将其设置为模式 1(8 位异步收发),波特率为 9600。然后启动串口并开启串口中断。 ```c void send_string(char *str) { while (*str) { SBUF = *str++; while (!TI); TI = 0; } } ``` 这个函数用于发送字符串到串口,通过循环将字符串中的每个字符发送到 SBUF 寄存器,然后等待 TI 标志位置 1,表示数据已经发送完成,将 TI 标志位清零。 ```c void update_display() { // TODO: 更新时钟显示内容 // 将时钟内容转换为字符串格式,存储到 uart_buffer 中 // 例如:sprintf(uart_buffer, "%02d:%02d:%02d", hour, minute, second); send_string(uart_buffer); } ``` 这个函数用于更新数码管显示内容。在函数中需要更新时钟显示内容,并将时钟内容转换为字符串格式,存储到 `uart_buffer` 中。然后调用 `send_string()` 函数将 `uart_buffer` 中的内容发送到串口。 ```c void timer0_isr() interrupt 1 { TH0 = TIMER0_RELOAD_VALUE; TL0 = TIMER0_RELOAD_VALUE; ms_counter++; if (ms_counter == 10) { ms_counter = 0; update_display(); } } ``` 这个函数是定时器 0 的中断服务程序,每隔一定时间(10 毫秒)触发一次中断。在中断服务程序中需要更新毫秒计数器并调用 `update_display()` 函数更新数码管显示内容。 ```c void uart_isr() interrupt 4 { if (RI) { RI = 0; uart_buffer[uart_buffer_index++] = SBUF; if (uart_buffer_index >= sizeof(uart_buffer)) { uart_buffer_index = 0; } } } ``` 这个函数是串口的中断服务程序,每当接收到一个字符时触发一次中断。在中断服务程序中需要将接收到的字符存储到 `uart_buffer` 中,并根据需要更新 `uart_buffer_index` 变量的值。

上面的代码中void external_int0_isr(void) interrupt 0是不是错了

您是对的,我犯了一个错误。在上面的代码中,`void external_int0_isr(void) interrupt 0`应该改为`void timer1_isr(void) interrupt 3`。 原因是,在8051中,定时器1的中断向量号为3,而不是0。因此,定时器1中断服务程序的声明应该是`void timer1_isr(void) interrupt 3`。同样的,外部中断0的中断向量号为0,因此外部中断0中断服务程序的声明是`void external_int0_isr(void) interrupt 0`。 下面是修改后的代码,供参考: ```c #include <reg51.h> sbit P1_0 = P1^0; unsigned int pulse_count = 0; unsigned int freq = 0; void init_timer1(void) { TMOD |= 0x10; // 设置定时器1为16位定时器模式 TH1 = 0; // 设置定时器1的计数初值为0 TL1 = 0; ET1 = 1; // 使能定时器1中断 TR1 = 1; // 启动定时器1 } void init_external_int0(void) { IT0 = 1; // 设置外部中断0为下降沿触发方式 EX0 = 1; // 使能外部中断0中断 EA = 1; // 使能总中断 } void timer1_isr(void) interrupt 3 { pulse_count = (TH1 << 8) | TL1; // 获取定时器1的计数值 freq = 1000000 / pulse_count; // 计算脉冲信号的频率,假设信号周期为1us P1_0 = 1; // 输出频率值到P1口 P1 = freq; } void external_int0_isr(void) interrupt 0 { // 外部中断0中断服务程序 } void main(void) { init_timer1(); init_external_int0(); while (1) { // 等待外部中断0触发 } } ``` 我很抱歉犯这样的错误,感谢您的指正。

相关推荐

为什么以下代码中的定时器无法正常使用:/* Main.c file generated by New Project wizard * * Created: ?? 5? 16 2023 * Processor: AT89C52 * Compiler: Keil for 8051 */ #include <reg51.h> #include <stdio.h> #define FREQ 12000000UL // ¶¨ÒåʱÖÓƵÂÊΪ12MHz #define TIMER1_PRESCALER 12 // ¶¨Ê±Æ÷0Ô¤·ÖƵÆ÷Ϊ12 sbit out5v_1 = P3^7; sbit in5v_1 = P3^6; sbit button1 = P3^1; sbit button2 = P3^0; sbit button3 = P3^2; sbit num1 = P2^2; sbit num2 = P2^3; sbit num3 = P2^4; double f = 11.0592;//???? unsigned int time1 = 100; int n=1; unsigned int data1; //?????? unsigned char NixieTable[]={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F}; void Delay(unsigned int xms) { unsigned char i, j; //???????,????????? while(xms--) { i = 2; j = 239; do { while (--j); } while (--i); } } //???????? void Nixie(unsigned char Location,Number) { switch(Location) //???? { case 1:num3=1;num2=1;num1=1;break; case 2:num3=1;num2=1;num1=0;break; case 3:num3=1;num2=0;num1=1;break; case 4:num3=1;num2=0;num1=0;break; case 5:num3=0;num2=1;num1=1;break; case 6:num3=0;num2=1;num1=0;break; case 7:num3=0;num2=0;num1=1;break; case 8:num3=0;num2=0;num1=0;break; } P0=NixieTable[Number]; //???? Delay(1); //?????? P0=0x00; //???0,?? } void Timer0_Start(int value){ TL0 = 0xFF; //ÉèÖö¨Ê±³õʼֵ TH0 = 0xFF; in5v_1 = 0; TR0 = 1; //¶¨Ê±Æ÷0¿ªÊ¼¼Æʱ } void Timer0_Isr(void) interrupt 1 { static unsigned int T0Count; TL0 = 0xFF; //ÉèÖö¨Ê±³õʼֵ TH0 = 0xFF; ++T0Count; if(T0Count >= time1){ T0Count = 0; in5v_1=1; TR0 = 1; //¶¨Ê±Æ÷0Í£Ö¹¼Æʱ } } void Timer0_Init(void) //1΢Ãë@10.973MHz { TMOD |= 0x01; //ÉèÖö¨Ê±Æ÷ģʽ TF0 = 0; //Çå³ýTF0±êÖ¾ ET0 = 1; //ʹÄܶ¨Ê±Æ÷0ÖÐ¶Ï EA = 1;//¿ªÆô×ÜÖÐ¶Ï } void main(){ out5v_1 = 1; in5v_1 = 1; button1 = 1; Timer0_Init(); isr_Init(); while(1){ n=8; data1 = time1; while(data1) { Nixie(n,data1%10); --n; data1 /= 10; } if(button1==0) //P3_2?K3??K3???? { Delay(20); //???? //Timer0_Start(time1); Timer0_Start(time1); while(button1==0); //???? Delay(20); //???? } if(button2==0) //P3_2?K3??K3???? { Delay(20); //???? ++time1; Delay(500); //???? } if(button3==0) //P3_2?K3??K3???? { Delay(20); //???? --time1; Delay(500); //???? } } }

#include "DSP2833x_Device.h" #include "DSP2833x_Examples.h" #define GEN_BUZZ_CLK GpioDataRegs.GPBTOGGLE.bit.GPIO35 = 1 //蜂鸣器控制IO,IO电平翻转,产生控制脉冲 #define BUZZ_OFF GpioDataRegs.GPBCLEAR.bit.GPIO35 = 1 //关闭蜂鸣器 #define MAXWARNTIMES 3 float t1=1; float t2=3; Uint16 N1=0; Uint16 N2=0; Uint16 WarnTimes=0; float freq0=1000; // 定时器0的中断频率(Hz) float prd0=0; // 定时器0的中断周期(sec)=1/freq0/2,对于方波,一个周期要中断2次 void InitBuzzGpio(void); interrupt void cpu_timer0_isr(void); void main(void) { N1=(Uint16)(t1/prd0); N2=(Uint16)(t1+t2/prd0); // Step 1. 系统控制初始化 InitSysCtrl(); // 蜂鸣器(Buzz)引脚初始化 InitBuzzGpio(); // Step 3. 清除所有中断、初始化PIE向量表,关闭cpu中断 DINT; InitPieCtrl(); IER = 0x0000; IFR = 0x0000; InitPieVectTable(); // 初始化TIMER0功能 EALLOW; PieVectTable.TINT0 = &cpu_timer0_isr; EDIS; InitCpuTimers(); prd0=1/(freq0*2); // 一个时钟周期,前半为H电平,后半为L电平。 ConfigCpuTimer(&CpuTimer0, 150, prd0*1e6);//定时周期单位:us IER |= M_INT1; // 使能TINT0(TINT0在INT1的第7个) PieCtrlRegs.PIEIER1.bit.INTx7 = 1; EINT; // 使能全局中断(EINT) ERTM; // 使能实时中断(ERTM) StartCpuTimer0(); // 启动定时器0 for(;;); // 或while(1); 死循环,不能让CPU停下来 } /*****************************************初始化IO端口************************************************/ void InitBuzzGpio(void) { EALLOW; GpioCtrlRegs.GPBMUX1.bit.GPIO35 = 0; // GPIO35 = GPIO GpioCtrlRegs.GPBDIR.bit.GPIO35 = 1; // GPIO35 = output GpioCtrlRegs.GPBPUD.bit.GPIO35 = 0; // Enable pullup on GPIO35 GpioDataRegs.GPBSET.bit.GPIO35 = 1; // Load output latch EDIS; } interrupt void cpu_timer0_isr(void) { CpuTimer0.InterruptCount++; if(CpuTimer0.InterruptCount<=N1) { GEN_BUZZ_CLK; } else if(CpuTimer0.InterruptCount<=N2) { BUZZ_OFF; } else { CpuTimer0.InterruptCount=0; } PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; }

最新推荐

recommend-type

###对华为OD分布式操作系统的详细介绍

华为OD
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不
recommend-type

怎么在集群安装安装hbase

您好,关于如何在集群上安装HBase,步骤大致如下: 1. 在HBase官网上下载最新版本的HBase,并解压到需要安装的目录下; 2. 配置HBase的环境变量:将HBase目录的bin子目录加入到PATH环境变量中; 3. 修改HBase配置文件:在HBase目录下的conf子目录中找到hbase-site.xml文件,并进行相应的配置,如指定HBase的Zookeeper节点等; 4. 启动HBase:使用HBase的bin目录下的start-hbase.sh脚本启动HBase; 5. 验证HBase是否正常运行:使用HBase自带的shell命令行工具操作HBase。 注意:以上步
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。