synchronized底层实现是什么

时间: 2023-09-26 12:06:17 浏览: 49
synchronized关键字用于实现Java中的线程同步。它的底层实现依赖于对象监视器(也称为锁),每个对象都有一个与之关联的监视器。当一个线程执行到synchronized代码块时,它尝试获取这个对象的监视器锁。如果锁已经被其他线程持有,则该线程会进入阻塞状态,直到获取到锁为止。 在Java的早期版本中,对象监视器的实现是通过内置锁(或互斥锁)来实现的。这是一种基于操作系统提供的底层机制(如互斥量或信号量)来确保在同一时间只有一个线程可以访问临界区。 然而,在JDK 1.6之后,Java引入了偏向锁、轻量级锁和重量级锁的概念,以提高多线程并发性能。这些锁机制的实现方式在不同情况下会有所变化,例如:偏向锁适用于线程交替执行的场景,轻量级锁适用于短期竞争的场景,而重量级锁适用于长时间竞争或阻塞的场景。 总结来说,synchronized底层实现依赖于对象监视器,具体的实现方式会根据情况选择不同的锁机制来提供线程安全和同步访问的能力。
相关问题

synchronized底层实现

回答: synchronized关键字解决的是多个线程之间访问资源的同步性,它通过获取对象的Monitor来实现线程同步。synchronized的锁升级过程是通过ACC_SYNCHRONIZED和monitorenter/monitorexit来实现的。具体而言,当一个线程获取了synchronized锁之后,其他试图获取该锁的线程将被阻塞,直到持有锁的线程释放锁。synchronized是可重入的,所以一个线程可以多次获取同一个锁,而不会自己锁死。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [Synchronized的底层实现原理(原理解析,面试必备)](https://blog.csdn.net/weixin_42460087/article/details/126474481)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

synchronized底层实现原理

### 回答1: synchronized关键字的底层实现原理涉及到Java对象头的概念。在Java对象头中,有一个表示锁状态的标志位,它用来标识对象的锁状态。当线程进入一个synchronized方法或代码块时,会尝试获取对象的锁。如果该锁没有被其他线程占用,则该线程会成功获取锁并进入临界区。如果该锁已经被其他线程占用,则该线程会进入阻塞状态,直到锁被释放。当线程执行完synchronized方法或代码块后,会释放锁。 在JVM中,synchronized关键字实现的锁有两种,分别为偏向锁和重量级锁。偏向锁是一种优化机制,它在对象创建时会将锁标志位初始化为偏向模式。当一个线程获取该对象的锁时,会将当前线程的ID记录在对象头中,并将锁标志位设置为偏向模式。以后该线程再次获取该对象的锁时,无需竞争,可以直接获取。重量级锁则是一种比较传统的锁机制,它使用操作系统的互斥量来实现锁。当多个线程竞争同一对象的锁时,会进入阻塞队列,等待锁被释放。 因此,synchronized关键字的底层实现原理就是通过Java对象头中的标志位来实现锁状态的记录和判断,并通过偏向锁和重量级锁来优化锁的竞争。 ### 回答2: synchronized是Java中用来实现线程同步的关键字,它保证了在同一时间只有一个线程可以进入被synchronized修饰的代码块或方法。synchronized的底层实现原理涉及到Java对象头、Monitor、线程间通信等。 每个Java对象在内存中都会有一个对象头,对象头中包含了一些元数据字段,其中有一个字段用来记录当前对象的锁信息。当一个线程进入synchronized代码块时,首先会尝试对对象加锁,如果对象的锁信息表明已经被其他线程锁定,则该线程会进入阻塞状态,等待其他线程释放锁。如果对象的锁信息表明还没有被其他线程锁定,则将对象头中的锁信息设置为该线程,并且将一个Monitor关联到该对象上。 Monitor是Java中用来实现监视器锁的机制,它与每个Java对象关联。Monitor内部维护了一个线程等待队列和一个拥有锁的线程。每个Monitor对象只能拥有一个线程,其他线程需要获取锁时只能进入等待队列。当某个线程执行完synchronized代码块或方法时,会释放锁,并且唤醒等待队列中的一个线程来竞争锁。 线程间的通信是通过底层的wait()、notify()和notifyAll()方法实现的。当一个线程执行wait()方法时,它会释放锁并进入阻塞状态,等待其他线程调用notify()或notifyAll()方法来唤醒它。唤醒的线程将进入就绪状态,并与其他线程竞争锁,竞争成功后将继续执行。 总结起来,synchronized的底层实现原理是通过Java对象头、Monitor和线程间的通信来实现的。它保证了在同一时间只有一个线程可以进入被synchronized修饰的代码块或方法,避免了多个线程对共享资源的并发访问造成的数据不一致问题。 ### 回答3: synchronized是Java中用于实现线程同步的关键字,可以用于修饰方法或代码块,保证多个线程对同一资源进行访问时的互斥。 synchronized的底层实现原理是基于对象的监视器(Monitor)机制。在Java中的每一个对象都会有一个与之关联的Monitor对象,Monitor对象用于同步对共享资源的访问。当一个线程遇到synchronized修饰的代码块或方法时,它首先需要获得对象的Monitor对象的锁。若锁已经被其他线程持有,则该线程会进入阻塞状态,直到锁被释放。当该线程获得锁之后,它就可以执行临界区内的代码了。 当一个线程执行完synchronized代码块或方法后,会释放对Monitor对象的锁,其他处于等待的线程就有机会获得锁,进入临界区执行代码。这样就保证了在任意时刻,只有一个线程可以获得锁,其他线程需要等待,实现了对共享资源的互斥访问。 synchronized通过内置的锁机制来实现线程间的同步,确保了数据的一致性和完整性。它基于底层的Monitor机制利用了操作系统的原子性操作,保证了多线程并发执行时的正确性。但是,在synchronized的机制下,一个线程获得了对象的锁之后,其他线程必须等待,可能会造成线程的阻塞和延迟。此外,在一些特殊情况下,可能会出现死锁的问题,即多个线程相互等待对方释放锁。 总之,synchronized是一种可靠的线程同步机制,通过Monitor对象的锁机制实现对共享资源的互斥访问。它的底层实现原理是基于对象的监视器(Monitor)机制,利用锁和等待队列来控制线程的执行和互斥访问。

相关推荐

最新推荐

recommend-type

基于matlab实现人工免疫算法的解决TSP问题的方法

基于matlab实现人工免疫算法的解决TSP问题的方法,体现了免疫算法在进化计算过程中的抗原学习、记忆机制、浓度调节机制以及多样性抗体保持策略等优良特性.rar
recommend-type

麦肯锡图表绘制培训.pptx

麦肯锡图表绘制培训.pptx
recommend-type

Java_Android的自由轻量级流媒体前端.zip

Java_Android的自由轻量级流媒体前端
recommend-type

node-v18.20.2-linux-arm64

node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64 node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64 node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64 node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64 node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64 node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64 node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64 node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64 node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64
recommend-type

华为的OD(Organizational Development)

华为的OD(Organizational Development)
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。