视差唯一性检验Python代码
时间: 2024-04-19 10:21:47 浏览: 136
求视差的代码
视差唯一性检验是一种用于计算机视觉中的深度估计问题的方法,它可以通过计算图像中不同像素之间的视差来推断物体的深度信息。以下是一个简单的视差唯一性检验的Python代码示例:
```python
import numpy as np
import cv2
def disparity_uniqueness_check(left_image, right_image, window_size=5, disparity_range=16):
# 转换为灰度图像
left_gray = cv2.cvtColor(left_image, cv2.COLOR_BGR2GRAY)
right_gray = cv2.cvtColor(right_image, cv2.COLOR_BGR2GRAY)
# 计算视差图
stereo = cv2.StereoSGBM_create(minDisparity=0, numDisparities=disparity_range, blockSize=window_size)
disparity = stereo.compute(left_gray, right_gray)
# 进行视差唯一性检验
uniqueness_mask = np.zeros_like(disparity)
for i in range(disparity.shape):
for j in range(disparity.shape):
min_diff = float('inf')
for d in range(disparity_range):
if j - d >= 0:
diff = abs(int(left_gray[i, j]) - int(right_gray[i, j - d]))
if diff < min_diff:
min_diff = diff
if min_diff < 10: # 设置一个阈值,判断是否满足唯一性条件
uniqueness_mask[i, j] = 255
return disparity, uniqueness_mask
# 读取左右图像
left_image = cv2.imread('left_image.png')
right_image = cv2.imread('right_image.png')
# 进行视差唯一性检验
disparity, uniqueness_mask = disparity_uniqueness_check(left_image, right_image)
# 显示结果
cv2.imshow('Disparity', disparity)
cv2.imshow('Uniqueness Mask', uniqueness_mask)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
请注意,这只是一个简单的示例代码,实际应用中可能需要根据具体情况进行参数调整和优化。另外,代码中使用了OpenCV库来进行图像处理和计算视差,因此需要先安装OpenCV库。
阅读全文