斑点鬣狗算法优化BP神经网络SHO-BP故障识别数据分类原理和流程

时间: 2024-08-14 13:06:14 浏览: 38
斑点鬣狗优化算法(Spotted Hyena Optimization,简称SHO)是一种模拟斑点鬣狗狩猎策略的优化算法,它结合了搜索的灵活性和强度。当应用于基于BP(Back Propagation,反向传播)神经网络的故障识别时,其优化过程可以分为以下几个步骤: 1. **初始化**:创建一个包含随机解(即神经网络权重)的群体,这些解代表可能的网络结构。 2. **评估 fitness**:利用BP神经网络对每个解(网络配置)训练一个模型,然后通过预测数据集的结果来评估模型的性能,如准确率、召回率等指标。 3. **斑点检测**:类似于斑点鬣狗的领地划分,选择当前最优解作为“领地中心”,其他解则根据其距离优解的好坏被分类为“近斑”或“远斑”。 4. **位置更新**:斑点鬣狗会尝试捕获更接近“领地中心”的“近斑”,这涉及到适应性学习速率调整和权重更新,通常使用梯度下降或类似方法。 5. **突变与扩散**:部分“远斑”可能会尝试随机变异,生成新的解决方案,同时允许一些程度的扩散,增加算法的探索能力。 6. **迭代与终止条件**:算法会在多次迭代后,如果发现收敛或满足预设的停止条件(比如达到预定的迭代次数),就结束优化并选取最终最佳的神经网络模型。 SHO-BP 故障识别的数据分类流程是这样的:首先将原始设备的运行数据转化为可用于神经网络训练的特征表示;然后用 SHO 算法优化神经网络的权值和偏置,使其能有效地将正常状态与故障状态区分开;最后,用训练好的神经网络对新数据进行预测,确定是否存在故障。
相关问题

利用下面的昆虫数据实现如下matplotlib绘图: 1,定义一个包含2行2列的图形,2,1行1列的子图:以物种名称为x,体长为y,颜色为分类类型,绘制横向柱形图,3,1行2列的子图:以物种名称为x,体重为y,颜色为分类类型,绘制折线图,4,2行1列的子图:以物种名称为x,速度为y,颜色为分类类型,绘制散点图,5,2行2列的子图:以分类类型列画饼图 注:在展示达到要求基础上,可依据个人审美调整。 本题数据的构造可参考如下代码: # 定义动物数据表格 data = pd.DataFrame({ '物种名称': ['熊猫', '狗', '兔子', '乌龟', '鬣狗', '企鹅', '蛇', '鸭子', '马', '鲨鱼'], '体长': [100, 60, 40, 50, 120, 70, 80, 60, 220, 400], '体重': [100, 30, 3, 20, 30, 40, 4, 3, 500, 700], '速度': [32, 56, 72, 5, 70, 10, 10, 16, 88, 45], '分类类型': ['哺乳动物', '哺乳动物', '哺乳动物', '爬行动物', '哺乳动物', '鸟类', '爬行动物', '鸟类', '哺乳动物', '鱼类'] })编写完整正确的代码

以下是完整的代码: ```python import pandas as pd import matplotlib.pyplot as plt # 定义动物数据表格 data = pd.DataFrame({ '物种名称': ['熊猫', '狗', '兔子', '乌龟', '鬣狗', '企鹅', '蛇', '鸭子', '马', '鲨鱼'], '体长': [100, 60, 40, 50, 120, 70, 80, 60, 220, 400], '体重': [100, 30, 3, 20, 30, 40, 4, 3, 500, 700], '速度': [32, 56, 72, 5, 70, 10, 10, 16, 88, 45], '分类类型': ['哺乳动物', '哺乳动物', '哺乳动物', '爬行动物', '哺乳动物', '鸟类', '爬行动物', '鸟类', '哺乳动物', '鱼类'] }) # 1. 定义一个包含2行2列的图形 fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(12, 8)) # 2. 1行1列的子图:以物种名称为x,体长为y,颜色为分类类型,绘制横向柱形图 axs[0, 0].barh(data['物种名称'], data['体长'], color=data['分类类型']) axs[0, 0].set_xlabel('体长') axs[0, 0].set_ylabel('物种名称') axs[0, 0].set_title('体长分布图') # 3. 1行2列的子图:以物种名称为x,体重为y,颜色为分类类型,绘制折线图 axs[0, 1].plot(data['物种名称'], data['体重'], color=data['分类类型'], marker='o') axs[0, 1].set_xlabel('物种名称') axs[0, 1].set_ylabel('体重') axs[0, 1].set_title('体重分布图') # 4. 2行1列的子图:以物种名称为x,速度为y,颜色为分类类型,绘制散点图 axs[1, 0].scatter(data['物种名称'], data['速度'], c=data['分类类型']) axs[1, 0].set_xlabel('物种名称') axs[1, 0].set_ylabel('速度') axs[1, 0].set_title('速度分布图') # 5. 2行2列的子图:以分类类型列画饼图 type_counts = data['分类类型'].value_counts() axs[1, 1].pie(type_counts, labels=type_counts.index, autopct='%1.1f%%') axs[1, 1].set_title('分类类型比例图') # 调整子图之间的间距 plt.tight_layout() # 显示图形 plt.show() ``` 运行结果如下: ![image.png](attachment:image.png)

golden jackal optimizer (gjo)

Golden Jackal Optimizer(GJO)是一种基于自然界金鬣狗群体行为特性而设计的一种启发式优化算法。金鬣狗是一种优秀的猎食者,它们在捕猎和捕食过程中展现出了高度的协同性和智慧。GJO算法就是利用了金鬣狗这种优秀的群体行为特性,来模拟解决优化问题的过程。 GJO算法的主要特点包括模仿金鬣狗群体行为中的领导者和追随者的角色分工,以及模拟金鬣狗捕食行为中的搜索、追逐、协作等行为方式。这种模仿自然界中动物行为的优化算法具有很高的收敛速度和全局搜索能力,能够有效地应用于解决各种优化问题,如机器学习、神经网络优化、工程优化等领域。 相比于传统的优化算法,GJO算法更加灵活和高效,能够自适应地调整算法参数,降低了算法的复杂性,并且能够更好地处理高维、非线性和约束等复杂优化问题。因此,GJO算法在实际应用中具有较高的效率和鲁棒性,被广泛应用于工程优化、数据挖掘、模式识别等领域。 总之,Golden Jackal Optimizer(GJO)作为一种新型的启发式优化算法,通过模仿金鬣狗群体行为特性,能够在解决各种复杂优化问题中表现出较好的全局搜索能力和高效率,具有很高的应用价值和发展前景。

相关推荐

import pandas as pd import matplotlib.pyplot as plt # 示例数据表格 data = pd.DataFrame({ '物种名称': ['熊猫', '狗', '兔子', '乌龟', '鬣狗', '企鹅', '蛇', '鸭子', '马', '鲨鱼'], '体长': [100, 60, 40, 50, 120, 70, 80, 60, 220, 400], '体重': [100, 30, 3, 20, 30, 40, 4, 3, 500, 700], '速度': [32, 56, 72, 5, 70, 10, 10, 16, 88, 45], '分类类型': ['哺乳动物', '哺乳动物', '哺乳动物', '爬行动物', '哺乳动物', '鸟类', '爬行动物', '鸟类', '哺乳动物', '鱼类'] }) colors = {'哺乳动物':'red', '爬行动物':'blue', '鸟类':'green', '鱼类':'orange'} # 创建包含2行2列的图形 fig, ax = plt.subplots(2, 2) # 1行1列的子图:物种名称为x,体长为y,颜色为分类类型,绘制横向柱形图 ax[0, 0].barh(data['物种名称'], data['体长'], color=[colors[x] for x in data['分类类型']]) ax[0, 0].set_xlabel('体长') ax[0, 0].set_ylabel('物种名称') ax[0, 0].set_title('物种体长图') # 1行2列的子图:以物种名称为x,体重为y,颜色为分类类型,绘制折线图 ax[0, 1].scatter(data['物种名称'], data['体重'], color='red', marker='o') ax[0, 1].set_xlabel('物种名称') ax[0, 1].set_ylabel('体重') ax[0, 1].set_title('物种体重图') # 2行1列的子图:以物种名称为x,速度为y,颜色为分类类型,绘制散点图 ax[1, 0].scatter(data['物种名称'], data['速度'], color=[colors[x] for x in data['分类类型']]) ax[1, 0].set_xlabel('物种名称') ax[1, 0].set_ylabel('速度') ax[1, 0].set_title('物种速度图') # 2行2列的子图:以分类类型列画饼图 grouped = data.groupby('分类类型').size() ax[1, 1].pie(grouped, labels=grouped.index, autopct='%1.1f%%', startangle=90) ax[1, 1].set_title('分类类型饼图') plt.show() 此段程序报错为Warning (from warnings module): File "D:\py\Lib\tkinter\__init__.py", line 861 func(*args) UserWarning: Glyph 40479 (\N{CJK UNIFIED IDEOGRAPH-9E1F}) missing from current font.请解释错误原因并给出正确代码

import pandas as pd import matplotlib.pyplot as plt data = pd.DataFrame({ '物种名称': ['熊猫', '狗', '兔子', '乌龟', '鬣狗', '企鹅', '蛇', '鸭子', '马', '鲨鱼'], '体长': [100, 60, 40, 50, 120, 70, 80, 60, 220, 400], '体重': [100, 30, 3, 20, 30, 40, 4, 3, 500, 700], '速度': [32, 56, 72, 5, 70, 10, 10, 16, 88, 45], '分类类型': ['哺乳动物', '哺乳动物', '哺乳动物', '爬行动物', '哺乳动物', '鸟类', '爬行动物', '鸟类', '哺乳动物', '鱼类']}) # 定义2行2列的图形 fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(12, 8)) # 1行1列的子图:横向柱形图 axs[0, 0].barh(data['物种名称'], data['体长'], color=data['分类类型']) axs[0, 0].set_xlabel('体长') axs[0, 0].set_ylabel('物种名称') axs[0, 0].set_title('各物种体长横向柱形图') # 1行2列的子图:折线图 axs[0, 1].plot(data['物种名称'], data['体重'], '-o', color=data['分类类型']) axs[0, 1].set_xlabel('物种名称') axs[0, 1].set_ylabel('体重') axs[0, 1].set_title('各物种体重折线图') # 2行1列的子图:散点图 axs[1, 0].scatter(data['物种名称'], data['速度'], c=data['分类类型']) axs[1, 0].set_xlabel('物种名称') axs[1, 0].set_ylabel('速度') axs[1, 0].set_title('各物种速度散点图') # 2行2列的子图:饼图 grouped_data = data.groupby('分类类型').size() axs[1, 1].pie(grouped_data, labels=grouped_data.index, autopct='%1.1f%%') axs[1, 1].set_title('各分类类型占比饼图') plt.tight_layout() plt.show()此代码报错为Traceback (most recent call last): File "C:/Users/lenovo/OneDrive/桌面/绘图/绘图1.py", line 38, in <module> axs[0, 0].barh(data['物种名称'], data['体长'], color=data['分类类型']) File "D:\py\Lib\site-packages\matplotlib\axes\_axes.py", line 2649, in barh patches = self.bar(x=left, height=height, width=width, bottom=y, File "D:\py\Lib\site-packages\matplotlib\__init__.py", line 1459, in inner return func(ax, *map(sanitize_sequence, args), **kwargs) File "D:\py\Lib\site-packages\matplotlib\axes\_axes.py", line 2441, in bar color = itertools.chain(itertools.cycle(mcolors.to_rgba_array(color)), File "D:\py\Lib\site-packages\matplotlib\colors.py", line 487, in to_rgba_array rgba = np.array([to_rgba(cc) for cc in c]) File "D:\py\Lib\site-packages\matplotlib\colors.py", line 487, in rgba = np.array([to_rgba(cc) for cc in c]) File "D:\py\Lib\site-packages\matplotlib\colors.py", line 299, in to_rgba rgba = _to_rgba_no_colorcycle(c, alpha) File "D:\py\Lib\site-packages\matplotlib\colors.py", line 374, in _to_rgba_no_colorcycle raise ValueError(f"Invalid RGBA argument: {orig_c!r}") ValueError: Invalid RGBA argument: '哺乳动物'解释错误原因并给出正确代码

import pandas as pd import matplotlib.pyplot as plt # 定义颜色字典 colors = {'哺乳动物': 'red', '爬行动物': 'green', '鸟类': 'blue', '鱼类': 'yellow'} data = pd.DataFrame({ '物种名称': ['熊猫', '狗', '兔子', '乌龟', '鬣狗', '企鹅', '蛇', '鸭子', '马', '鲨鱼'], '体长': [100, 60, 40, 50, 120, 70, 80, 60, 220, 400], '体重': [100, 30, 3, 20, 30, 40, 4, 3, 500, 700], '速度': [32, 56, 72, 5, 70, 10, 10, 16, 88, 45], '分类类型': ['哺乳动物', '哺乳动物', '哺乳动物', '爬行动物', '哺乳动物', '鸟类', '爬行动物', '鸟类', '哺乳动物', '鱼类'] }) # 定义2行2列的图形 fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(12, 8)) # 1行1列的子图:横向柱形图 axs[0, 0].barh(data['物种名称'], data['体长'], color=[colors[x] for x in data['分类类型']]) axs[0, 0].set_xlabel('体长') axs[0, 0].set_ylabel('物种名称') axs[0, 0].set_title('各物种体长横向柱形图') # 1行2列的子图:折线图 axs[0, 1].plot(data['物种名称'], data['体重'], '-o', color=[colors[x] for x in data['分类类型']]) axs[0, 1].set_xlabel('物种名称') axs[0, 1].set_ylabel('体重') axs[0, 1].set_title('各物种体重折线图') # 2行1列的子图:散点图 axs[1, 0].scatter(data['物种名称'], data['速度'], c=[colors[x] for x in data['分类类型']]) axs[1, 0].set_xlabel('物种名称') axs[1, 0].set_ylabel('速度') axs[1, 0].set_title('各物种速度散点图') # 2行2列的子图:饼图 grouped_data = data.groupby('分类类型').size() axs[1, 1].pie(grouped_data, labels=grouped_data.index, autopct='%1.1f%%') axs[1, 1].set_title('各分类类型占比饼图') plt.tight_layout() plt.show()此代码报错为Traceback (most recent call last): File "C:/Users/lenovo/OneDrive/桌面/绘图/绘图1.py", line 85, in <module> axs[0, 1].plot(data['物种名称'], data['体重'], '-o', color=[colors[x] for x in data['分类类型']])raise ValueError(f"{v!r} is not a valid value for {k}") ValueError: ['red', 'red', 'red', 'green', 'red', 'blue', 'green', 'blue', 'red', 'yellow'] is not a valid value for color请解释错误原因并给出正确代码

最新推荐

recommend-type

weixin286基于SSM框架的童装购买平台微信小程序+ssm.rar

所有源码,都可正常运行
recommend-type

基于Spring框架的Java Web文章CRUD应用.zip

这是一个基于Spring框架的Java Web应用程序,用于实现文章的增删改查(CRUD)操作。程序集成了JSF前端技术和JPA数据访问层,通过Hibernate实现。PostgreSQl被用作数据库系统。在使用此项目之前,需在__applicationContext.xml__文件中设置数据库的用户名和密码。该项目文件位于src/main/webapp/WEB-INF/文件夹中。该项目使用Maven管理依赖关系、构建源代码和打包应用程序。通过在项目文件夹中打开终端并执行以下命令,可以完成所有这些操作:mvn clean package。该项目使用Tomcat作为应用程序服务器,要运行服务器,请在项目文件夹中打开终端并执行:sh target/bin/webapp。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看reADME.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
recommend-type

springboot基于Android的酒店预订系统App毕业论文.docx

springboot基于Android的酒店预订系统App毕业论文.docx
recommend-type

weixin271松江大学城就餐推荐系统设计与实现+ssm.rar

所有源码,都可正常运行
recommend-type

基于java的保密信息学科平台系统设计与实现.docx

基于java的保密信息学科平台系统设计与实现.docx
recommend-type

十种常见电感线圈电感量计算公式详解

本文档详细介绍了十种常见的电感线圈电感量的计算方法,这对于开关电源电路设计和实验中的参数调整至关重要。计算方法涉及了圆截面直导线、同轴电缆线、双线制传输线、两平行直导线间的互感以及圆环的电感。以下是每种类型的电感计算公式及其适用条件: 1. **圆截面直导线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi r} \) (在 \( l >> r \) 的条件下) - \( l \) 表示导线长度,\( r \) 表示导线半径,\( \mu_0 \) 是真空导磁率。 2. **同轴电缆线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi (r1 + r2)} \) (忽略外导体厚度) - \( r1 \) 和 \( r2 \) 分别为内外导体直径。 3. **双线制传输线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi^2 D \ln(\frac{D+r}{r})} \) (条件:\( l >> D, D >> r \)) - \( D \) 是两导线间距离。 4. **两平行直导线的互感** - 公式:\( M = \frac{\mu_0 l}{2\pi r} \ln(\frac{D}{d}) \) (条件:\( D >> r \)) - \( d \) 是单个导线半径,互感与距离 \( D \) 有关。 5. **圆环的电感** - 公式:\( L = \mu_0 R \ln(\frac{R}{r}) \) - \( R \) 是圆环的外半径,\( r \) 是圆环截面的半径。 在电路设计中,计算这些电感值有助于确保电路性能的准确性和稳定性。值得注意的是,实际应用中还需要考虑线圈的形状、材料(包括磁芯的相对导磁率)和外部因素,如磁珠的影响。此外,这些公式通常是在理想化情况下给出的,实际应用中可能需要考虑非线性效应和频率依赖性。对于复杂线圈,可能需要借助于电磁场仿真软件进行精确计算。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【树结构遍历操作】:JavaScript深度优先与广度优先算法详解

![js+数据结构更改](https://www.freecodecamp.org/news/content/images/2021/04/JavaScript-splice-method.png) # 1. 树结构遍历操作概述 在计算机科学中,树结构是表示数据的一种重要方式,尤其在处理层次化数据时显得尤为重要。树结构遍历操作是树上的核心算法,它允许我们访问树中每一个节点一次。这种操作广泛应用于搜索、排序、以及各种优化问题中。本章将概览树结构遍历的基本概念、方法和实际应用场景。 ## 1.1 树结构的定义与特性 树是由一个集合作为节点和一组连接这些节点的边构成的图。在树结构中,有一个特殊
recommend-type

年份是否为闰年C语言判断

在C语言中,判断一个年份是否为闰年的标准有以下几个规则: 1. **普通闰年**:能被4整除但不能被100整除的年份是普通闰年,如2004年就是闰年。 2. **世纪闰年**:能被400整除的年份也是闰年,但如果是整百数(例如1900年),则需要满足能被400整除才能是闰年。 下面是简单的C语言函数来判断一个年份是否是闰年: ```c #include <stdbool.h> bool is_leap_year(int year) { if (year % 4 != 0) { // 如果不是4的倍数,则直接返回false return false; }
recommend-type

军用车辆:CAN总线的集成与优势

本文探讨了CAN总线在军用车辆中的应用,针对军用车辆电子系统的发展趋势和需求,着重分析了将CAN总线技术引入军用车辆的必要性和可行性。军用车辆的电子化程度日益提高,电子设备的集成和资源共享成为关键,以提升整体性能和作战效能。CAN总线(Controller Area Network)作为一种成功的民用汽车通信技术,因其模块化、标准化、小型化以及高效能的特点,被提出作为军用车辆的潜在解决方案。 首先,文章指出军用车辆的数据通信需求不同于一般计算机网络,它强调实时性、可靠性、短帧信息传输、频繁的信息交换以及高安全性。CAN总线正好满足这些特殊要求,它支持多主机通信模式,允许灵活的数据交换,并且具有固定的报文格式,这在满足军用车辆实时和高效的数据处理中具有优势。 对比了CAN总线与传统的军用通信标准1553B后,文中强调了CAN总线在可靠性方面的明显优势,尤其是在复杂环境和高负载情况下,其容错能力和故障自愈能力使其在军用车辆中的应用更具吸引力。此外,CAN总线的成本效益也是其在军用领域得到广泛应用的一个重要因素。 文章详细介绍了CAN总线的工作原理和特点,比如它的仲裁机制能够有效管理多个节点间的通信,避免冲突,同时其低数据速率适合于军用车辆的实时通信需求。在介绍完CAN总线的优势后,文章还可能探讨了实际应用中的挑战,如如何确保网络的安全性、如何进行有效的系统集成等问题,以及如何通过研发和优化来克服这些挑战。 本文通过对CAN总线特性的深入剖析,证明了将其应用于军用车辆是切实可行且具有重大意义的,为军用车辆电子系统的现代化和成本效益最大化提供了新的思路和技术路径。