有一个Excel表,每一列代表每一周的供货量,每一行代表每一家公司的供货量,0代表没有供货。所以出现0代表供货发生间隔,每一行连续有不为0的值说明这几周的供货连续。现在为了研究供货的稳定性,引入时间间隔概念,即计算供货间隔次数、平均间隔周数和平均连续周数。需要Python代码。
时间: 2024-04-18 14:31:51 浏览: 79
以下是一个用Python计算供货间隔次数、平均间隔周数和平均连续周数的示例代码:
```python
import pandas as pd
# 读取Excel表格数据
data = pd.read_excel("supply_data.xlsx", header=None)
# 计算供货间隔次数
def calculate_interval_count(row):
intervals = 0
for i in range(len(row)-1):
if row[i] != 0 and row[i+1] == 0:
intervals += 1
return intervals
# 计算平均间隔周数
def calculate_avg_interval(row):
intervals = []
interval_sum = 0
for i in range(len(row)-1):
if row[i] != 0 and row[i+1] == 0:
intervals.append(interval_sum + 1)
interval_sum = 0
elif row[i] != 0 and row[i+1] != 0:
interval_sum += 1
if len(intervals) > 0:
return sum(intervals) / len(intervals)
else:
return 0
# 计算平均连续周数
def calculate_avg_continuous(row):
continuous = []
continuous_sum = 0
for i in range(len(row)):
if row[i] != 0:
continuous_sum += 1
else:
if continuous_sum > 0:
continuous.append(continuous_sum)
continuous_sum = 0
if len(continuous) > 0:
return sum(continuous) / len(continuous)
else:
return 0
# 计算每一行的供货间隔次数、平均间隔周数和平均连续周数
interval_counts = data.apply(calculate_interval_count, axis=1)
avg_intervals = data.apply(calculate_avg_interval, axis=1)
avg_continuous = data.apply(calculate_avg_continuous, axis=1)
# 将结果添加到原始数据表格中
data['Interval Counts'] = interval_counts
data['Average Intervals'] = avg_intervals
data['Average Continuous'] = avg_continuous
# 将结果保存为新的Excel表格
data.to_excel("supply_analysis.xlsx", index=False)
```
请确保将Excel文件命名为"supply_data.xlsx",并且与代码文件在同一目录下。代码将计算每一行的供货间隔次数、平均间隔周数和平均连续周数,并将结果保存为新的Excel表格"supply_analysis.xlsx"。你可以根据需要调整代码,以适应不同的数据结构和需求。
阅读全文