opencv双目圆点标定代码

时间: 2024-01-24 08:15:29 浏览: 138
根据提供的引用内容,我无法找到关于opencv双目圆点标定的具体代码。但是,我可以为您提供一般的步骤和示例代码,以帮助您进行双目相机的标定。 双目相机的圆点标定通常包括以下步骤: 1. 收集标定图像:使用双目相机拍摄一系列标定图像,这些图像应该包含已知的三维点和对应的二维图像点。 2. 提取角点:对于每个标定图像,使用角点检测算法(如OpenCV中的`findChessboardCorners`函数)来检测图像中的角点。 3. 三维-二维对应关系:将每个检测到的角点与其对应的已知三维点进行匹配。 4. 标定相机:使用标定图像和对应的三维-二维对应关系来计算相机的内部参数(如相机矩阵、畸变系数等)和外部参数(如旋转矩阵、平移向量等)。 5. 评估标定结果:使用标定结果对其他图像进行校正和测量。 下面是一个简单的示例代码,演示了如何使用OpenCV进行双目相机的圆点标定: ```python import cv2 import numpy as np # 读取标定图像 left_images = [...] # 左相机图像路径列表 right_images = [...] # 右相机图像路径列表 # 设置标定板参数 pattern_size = (9, 6) # 内角点个数 square_size = 1.0 # 棋盘格方块大小(单位:毫米) # 准备角点容器 obj_points = [] # 三维点 left_img_points = [] # 左相机角点 right_img_points = [] # 右相机角点 # 收集标定图像的角点 for left_img_path, right_img_path in zip(left_images, right_images): # 读取图像 left_img = cv2.imread(left_img_path) right_img = cv2.imread(right_img_path) # 转换为灰度图像 left_gray = cv2.cvtColor(left_img, cv2.COLOR_BGR2GRAY) right_gray = cv2.cvtColor(right_img, cv2.COLOR_BGR2GRAY) # 查找角点 left_found, left_corners = cv2.findChessboardCorners(left_gray, pattern_size) right_found, right_corners = cv2.findChessboardCorners(right_gray, pattern_size) # 如果两个相机都找到了角点 if left_found and right_found: # 添加三维点 obj_points.append(np.zeros((pattern_size[0] * pattern_size[1], 3), np.float32)) obj_points[-1][:, :2] = np.mgrid[0:pattern_size[0], 0:pattern_size[1]].T.reshape(-1, 2) * square_size # 添加左相机角点和右相机角点 left_img_points.append(left_corners) right_img_points.append(right_corners) # 进行双目相机标定 ret, left_camera_matrix, left_dist_coeffs, right_camera_matrix, right_dist_coeffs, R, T, E, F = cv2.stereoCalibrate( obj_points, left_img_points, right_img_points, None, None, None, None, left_gray.shape[::-1], flags=cv2.CALIB_FIX_INTRINSIC) # 打印标定结果 print("左相机内参矩阵:") print(left_camera_matrix) print("左相机畸变系数:") print(left_dist_coeffs) print("右相机内参矩阵:") print(right_camera_matrix) print("右相机畸变系数:") print(right_dist_coeffs) print("旋转矩阵:") print(R) print("平移向量:") print(T) print("本质矩阵:") print(E) print("基础矩阵:") print(F) ``` 请注意,上述代码仅提供了一个基本的示例,实际应用中可能需要根据您的具体需求进行修改和调整。
阅读全文

相关推荐

最新推荐

recommend-type

Python使用OpenCV进行标定

这篇文章将探讨如何使用Python和OpenCV库进行相机标定,特别是针对棋盘格模板的方法。 首先,我们要理解标定的目的。相机标定是为了消除由相机硬件特性引起的图像失真,使图像中的三维点能够在二维图像平面上准确地...
recommend-type

opencv摄像机双目标定代码

在提供的代码片段中,我们看到一个简单的OpenCV程序,它捕获来自摄像头的帧,并允许用户通过按键"C"保存图像作为标定图片。`cvCreateCameraCapture(0)` 创建了一个指向默认摄像头的捕获对象,`cvQueryFrame()` 用于...
recommend-type

Python opencv相机标定实现原理及步骤详解

本文将深入探讨Python OpenCV库中相机标定的实现原理和步骤,帮助读者理解和应用这一技术。 相机标定的主要目的是获取相机的内参数矩阵(K)和外参数矩阵(R和T),以及畸变系数(dist)。内参数矩阵描述了相机的...
recommend-type

Opencv中imwrite函数源代码

OpenCV中imwrite函数源代码详解 OpenCV是一个功能强大且广泛应用的计算机视觉库,它提供了许多有用的函数来处理图像和视频。imwrite函数是OpenCV中一个重要的函数,用于将图像写入到文件中。在本文中,我们将详细地...
recommend-type

航空公司客户满意度数据转换与预测分析Power BI案例研究

内容概要:本文档介绍了航空公司的业务分析案例研究,涵盖两个主要部分:a) 使用SSIS进行数据转换,b) 利用RapidMiner进行预测分析。这两个任务旨在通过改善客户满意度来优化业务运营。数据来源包括多个CSV文件,如flight_1.csv、flight_2.csv、type.csv、customer.csv 和 address.csv。第一部分要求学生创建事实表、客户维度表和时间维度表,并描述整个数据转换流程。第二部分则需要利用RapidMiner开发两种不同的模型(如决策树和逻辑回归)来预测客户满意度,并完成详细的报告,其中包括执行摘要、预测分析过程、重要变量解释、分类结果、改进建议和伦理问题讨论。 适合人群:适用于对数据科学和商业分析有一定基础的学生或专业人士。 使用场景及目标:本案例研究用于教学和评估,帮助学员掌握数据转换和预测建模的技术方法,提高客户满意度和业务绩效。目标是通过实际操作加深对相关工具和技术的理解,并能够将其应用于实际业务中。 其他说明:此作业占总评的40%,截止时间为2024年10月25日16:00。
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。