conv_pw_13_relu

时间: 2023-07-30 20:11:19 浏览: 54
conv_pw_13_relu是麦田怪圈的一层,用于提取图像的特征。在迁移学习中,我们使用了MobileNet模型,并将其conv_pw_13_relu层作为输出,以提取图像的特征。\[1\]这一层的输出将用于构建自己的分类器。\[2\] #### 引用[.reference_title] - *1* *2* *3* [TensorFlow.js课程笔记(四)](https://blog.csdn.net/BlueBlueSkyZ/article/details/104723446)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
相关问题

def conv_relu_forward(x, w, b, conv_param): a, conv_cache = layers.conv_forward_fast(x, w, b, conv_param) out, relu_cache = layers.relu_forward(a) cache = (conv_cache, relu_cache) return out, cache显示在 'layers.py' 中找不到引用 'conv_forward_fast'但是并未报错

这个问题可能是因为你使用了一个名为 `layers` 的模块,但是在这个模块中并没有定义 `conv_forward_fast` 函数。 如果你使用的是某个深度学习框架或库,这个函数可能是定义在这个框架或库的其他模块中的。你需要检查一下这个框架或库的文档,看看这个函数定义在哪个模块中,并且正确导入这个模块。 如果这个函数是你自己定义的,你需要确保它已经被正确地定义在 `layers.py` 文件中,并且你已经正确地导入了这个文件。 另外,即使你在代码中使用了一个未定义的函数,但是如果这个函数并没有被调用到,代码可能仍然可以正常运行。所以,虽然你的代码能够运行,但是最好还是要检查一下,确保你的代码是正确的,不会在某些情况下出现错误。

Traceback (most recent call last): File "E:\PycharmProjects\pythonProject\cnn_test\CNN_AlexNet\start.py", line 18, in <module> solver.train() File "E:\PycharmProjects\pythonProject\cnn_test\CNN_AlexNet\solver.py", line 225, in train self._step() File "E:\PycharmProjects\pythonProject\cnn_test\CNN_AlexNet\solver.py", line 165, in _step loss, grads = self.model.loss(X_batch, y_batch) File "E:\PycharmProjects\pythonProject\cnn_test\CNN_AlexNet\cnn.py", line 104, in loss a3, cache3 = conv_relu_forward(a2,W34,b34,conv_param34) File "E:\PycharmProjects\pythonProject\cnn_test\CNN_AlexNet\layer_utils.py", line 47, in conv_relu_forward a, conv_cache = conv_relu_forward(x, w, b, conv_param) File "E:\PycharmProjects\pythonProject\cnn_test\CNN_AlexNet\layer_utils.py", line 47, in conv_relu_forward a, conv_cache = conv_relu_forward(x, w, b, conv_param) File "E:\PycharmProjects\pythonProject\cnn_test\CNN_AlexNet\layer_utils.py", line 47, in conv_relu_forward a, conv_cache = conv_relu_forward(x, w, b, conv_param) [Previous line repeated 993 more times] RecursionError: maximum recursion depth exceeded

这个错误通常出现在使用递归函数时,递归层数超过了系统允许的最大递归深度,导致程序出错。在您的代码中,出现了无限递归的情况,导致递归深度超过了Python解释器的限制。要解决这个问题,您可以考虑以下方法: 1. 优化代码,减少递归调用次数,避免无限递归的情况。 2. 增加 Python 解释器的最大递归深度限制,例如使用 sys.setrecursionlimit() 函数进行设置。 3. 重新设计算法,避免使用递归函数,改用循环等其他方式实现逻辑。 希望这些方法对您有所帮助。

相关推荐

class Conv_ReLU_Block(nn.Module):#定义了ConvReLU()类,继承了nn.Module父类。 def __init__(self): super(Conv_ReLU_Block, self).__init__() self.conv = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False)#定义了对象变量self.conv,属性是{nn.Conv2d()}对象,实际上self.conv是{nn.Conv2d()}类的实例化,实例化时需要参数。 self.relu = nn.ReLU(inplace=True) def forward(self, x):#定义了forward()方法,对输入进行操作 return self.relu(self.conv(x))#卷积和激活的一个框,下次可以直接调用 # x = self.conv(x)实际上为x = self.conv.forward(x),调用了nn.Conv2d()的forward()函数,由于大家都继承了nn.Module父类,根据nn.Module的使用方法,.forward()不写,直接写object(input) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.residual_layer = self.make_layer(Conv_ReLU_Block, 18)#调用Conv_ReLU_Block,重复18个Conv_ReLU_Block模块 self.input = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False)#通道层放大 self.output = nn.Conv2d(in_channels=64, out_channels=1, kernel_size=3, stride=1, padding=1, bias=False)#通道层缩小 self.relu = nn.ReLU(inplace=True)#19-22初始化网络层 for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, sqrt(2. / n)) def make_layer(self, block, num_of_layer):#把Conv_ReLU_Block做一个循环,封装在 layers = [] for _ in range(num_of_layer): layers.append(block()) return nn.Sequential(*layers) def forward(self, x):#网络的整体的结构 residual = x out = self.relu(self.input(x))#增加通道数 out = self.residual_layer(out)#通过18层 out = self.output(out)#输出,降通道数 out = torch.add(out, residual)#做了一个残差连接 return out

最新推荐

recommend-type

关于keras.layers.Conv1D的kernel_size参数使用介绍

在深度学习领域,Keras库提供了许多用于构建神经网络的层,其中`keras.layers.Conv1D`是专门用于处理一维数据的卷积层。本文将深入探讨`Conv1D`层中的`kernel_size`参数,以及它如何影响模型的构建和功能。 `kernel...
recommend-type

pytorch 状态字典:state_dict使用详解

例如,如果要加载的`state_dict`中的`conv1.weight`键需要匹配目标模型的`conv1`层,可以这样做: ```python conv1_weight_state = torch.load('./model_state_dict.pt')['conv1.weight'] model.conv1.weight.data....
recommend-type

基于SpringMVC+Hibernate+AngularJs前后端分离的选课系统+源码+文档+界面展示(毕业设计&课程设计)

基于SpringMVC+Hibernate+AngularJs前后端分离的选课系统+源码+文档+界面展示,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 基于SpringMVC+Hibernate+AngularJs前后端分离的选课系统+源码+文档+界面展示,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 基于SpringMVC+Hibernate+AngularJs前后端分离的选课系统+源码+文档+界面展示,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 项目简介: 本选课系统开源协议基于GPL协议,仅用作交流学习用途。 本系统采用了前后端分离的开发模式,后端采用Springmvc+Hibernate框架。 前端使用AngularJs+JQuery+Bootstrap开发,并且使用前端构建工具Gulp。
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【进阶】Python高级加密库cryptography

![【进阶】Python高级加密库cryptography](https://img-blog.csdnimg.cn/20191105183454149.jpg) # 2.1 AES加密算法 ### 2.1.1 AES加密原理 AES(高级加密标准)是一种对称块密码,由美国国家标准与技术研究院(NIST)于2001年发布。它是一种分组密码,这意味着它一次处理固定大小的数据块(通常为128位)。AES使用密钥长度为128、192或256位的迭代密码,称为Rijndael密码。 Rijndael密码基于以下基本操作: - 字节替换:将每个字节替换为S盒中的另一个字节。 - 行移位:将每一行