yolov8图形化界面程序代码,要有图片和视频识别和加载模型功能的代码,即插即用的
时间: 2024-10-18 15:12:10 浏览: 24
YOLOv8(You Only Look Once version 8)是一个先进的目标检测算法,它通常用于实时图像和视频处理。要在Python中创建一个具备图片和视频识别以及模型加载的图形用户界面(GUI),我们可以利用开源库如PyQt5来构建界面,并结合Yolov8的PythonAPI,如`yolov8`。
下面是一个简单的示例,展示如何使用PyQt5创建一个基本的GUI并加载模型进行预测:
```python
import sys
from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QPushButton
from PIL import Image
import cv2
import numpy as np
from yolov8 import YOLO
# 初始化YOLOv8模型
model = YOLO()
class App(QMainWindow):
def __init__(self):
super().__init__()
# 设置窗口布局
self.setWindowTitle('YOLOv8 GUI')
self.setGeometry(100, 100, 800, 600)
self.label = QLabel(self)
self.button_load_image = QPushButton("Load Image", self)
self.button_load_video = QPushButton("Load Video", self)
# 图像显示区域
self.label.setPixmap(QPixmap('path_to_your_default_image.png'))
self.label.resize(self.label.sizeHint())
# 按钮点击事件处理器
self.button_load_image.clicked.connect(self.load_image)
self.button_load_video.clicked.connect(self.load_video)
layout = QVBoxLayout()
layout.addWidget(self.label)
layout.addWidget(self.button_load_image)
layout.addWidget(self.button_load_video)
self.setLayout(layout)
def load_image(self):
filename = QFileDialog.getOpenFileName(self, 'Select an image', '', "Image Files (*.png *.jpg)")
if filename[0]:
img = Image.open(filename[0])
# 转换为cv2格式
img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
results = model.detect(Image.fromarray(img_cv))
for result in results:
draw_img = model.show_results(img_cv, result)
self.label.setPixmap(QPixmap.fromImage(cv2.cvtColor(draw_img, cv2.COLOR_BGR2RGB)))
def load_video(self):
video_path = QFileDialog.getOpenFileName(self, 'Select a video', '', "Video Files (*.mp4 *.avi)")
cap = cv2.VideoCapture(video_path[0])
while True:
ret, frame = cap.read()
if not ret:
break
results = model.detect(frame)
draw_frame = model.show_results(frame, results)
qimg = QImage(draw_frame, frame.shape[1], frame.shape[0], QImage.Format_RGB888)
pixmap = QPixmap.fromImage(qimg)
self.label.setPixmap(pixmap)
if __name__ == '__main__':
app = QApplication(sys.argv)
ex = App()
ex.show()
sys.exit(app.exec_())
```
请注意,你需要安装必要的依赖包,并替换上述代码中的`path_to_your_default_image.png`和YOLOv8模型路径。此外,实际运行这个代码前,确保已经正确下载和配置了YOLOv8的模型文件。
阅读全文