Sql5.7分组排序取第一条

时间: 2023-12-02 09:31:07 浏览: 45
在MySQL 5.7版本中,由于窗口函数的限制,直接实现分组后组内排序变得困难。不过,你可以通过以下方法实现获取每组的降序第一名。 首先,你可以使用子查询来对原始数据进行降序排序。你可以将原始数据按照降序排列,并且设置一个足够大的偏移量(比如999999),以确保子查询返回所有的数据。这样可以保证在子查询中获取到每个组的降序排列数据。 ```sql SELECT `name`, money, times FROM syc ORDER BY money DESC LIMIT 999999 ``` 接下来,你可以将上述子查询作为一个派生表,并使用GROUP BY子句按照`name`进行分组。这样可以确保每个组只有一条记录。 ```sql SELECT * FROM ( SELECT `name`, money, times FROM syc ORDER BY money DESC LIMIT 999999 ) a GROUP BY `name` ``` 上述查询将返回每个组的降序第一名。 请注意,如果你的查询结果中存在重复的`name`值,你需要使用DISTINCT关键字来去除重复值。同时,在使用GROUP BY子句时,你需要确保你选择的字段在GROUP BY子句中都有出现。 综上所述,可以得到以下SQL查询: ```sql SELECT temp.`name`, temp.money, temp.times FROM ( SELECT `name`, money, times FROM syc ORDER BY money DESC LIMIT 999999 ) temp GROUP BY temp.`name` ``` 以上就是获取每组降序第一名的SQL查询方法。希望可以帮助到你。

相关推荐

最新推荐

recommend-type

SQL Server分组排序取数据的实现

在SQL Server中,分组和排序是数据处理的两个关键操作。它们可以帮助我们对大量数据进行聚合、组织和筛选,以便更好地分析和理解数据。本文将深入探讨如何在SQL Server中实现分组排序并获取每组的特定行数据。 首先...
recommend-type

SQL SERVER 分组求和sql语句

在SQL Server中,分组和求和是数据库查询中的核心操作,它们经常被用来对数据进行聚合,以获得更高级别的统计信息。本篇将详细解释如何使用SQL Server的`GROUP BY`语句来实现分组求和。 首先,`GROUP BY`语句是SQL...
recommend-type

sqlserver中重复数据值只取一条的sql语句

当数据库表中的某些列有重复的值时,我们可能需要仅选取其中的一条记录,例如,选择每组重复数据的第一条或者最后一条。题目中提到的SQL语句就是解决这类问题的一个示例。 首先,我们创建一个名为`TestData`的数据...
recommend-type

在SQL SERVER中查询数据库中第几条至第几条之间的数据SQL语句写法

总结一下,在SQL Server中查询第几条至第几条之间的数据,可以采用`TOP`、`BETWEEN`、`NOT IN`以及结合`IDENTITY`函数的方法,具体选择哪种取决于数据的特性、效率需求以及是否需要保持原始顺序。在实际应用中,应...
recommend-type

sqlserver清除完全重复的数据只保留重复数据中的第一条

删除这些最大`autoID`的行,就能保留每组重复数据的第一条(按`autoID`排序)。 5. **清除原始表数据**: 清除`testtab`表中的所有数据,为下一步插入处理后的数据做准备。 6. **重新插入数据**: 将`#Tmp`表中...
recommend-type

移动边缘计算在车辆到一切通信中的应用研究

"这篇论文深入研究了移动边缘计算(MEC)在车辆到一切(V2X)通信中的应用。随着车辆联网的日益普及,V2X应用对于提高道路安全的需求日益增长,尤其是那些需要低延迟和高可靠性的应用。然而,传统的基于IEEE 802.11p标准的技术在处理大量连接车辆时面临挑战,而4G LTE网络虽然广泛应用,但因其消息传输需经过核心网络,导致端到端延迟较高。论文中,作者提出MEC作为解决方案,它通过在网络边缘提供计算、存储和网络资源,显著降低了延迟并提高了效率。通过仿真分析了不同V2X应用场景下,使用LTE与MEC的性能对比,结果显示MEC在关键数据传输等方面具有显著优势。" 在车辆到一切(V2X)通信的背景下,移动边缘计算(MEC)扮演了至关重要的角色。V2X涵盖了车辆与车辆(V2V)、车辆与基础设施(V2I)、车辆与行人(V2P)以及车辆与网络(V2N)等多种交互方式,这些交互需要快速响应和高效的数据交换,以确保交通安全和优化交通流量。传统的无线通信技术,如IEEE 802.11p,由于其技术限制,在大规模联网车辆环境下无法满足这些需求。 4G LTE网络是目前最常用的移动通信标准,尽管提供了较高的数据速率,但其架构决定了数据传输必须经过网络核心,从而引入了较高的延迟。这对于实时性要求极高的V2X应用,如紧急制动预警、碰撞避免等,是不可接受的。MEC的出现解决了这个问题。MEC将计算能力下沉到网络边缘,接近用户终端,减少了数据传输路径,极大地降低了延迟,同时提高了服务质量(QoS)和用户体验质量(QoE)。 论文中,研究人员通过建立仿真模型,对比了在LTE网络和MEC支持下的各种V2X应用场景,例如交通信号协调、危险区域警告等。这些仿真结果验证了MEC在降低延迟、增强可靠性方面的优越性,特别是在传输关键安全信息时,MEC能够提供更快的响应时间和更高的数据传输效率。 此外,MEC还有助于减轻核心网络的负担,因为它可以处理一部分本地化的计算任务,减少对中央服务器的依赖。这不仅优化了网络资源的使用,还为未来的5G网络和车联网的发展奠定了基础。5G网络的超低延迟和高带宽特性将进一步提升MEC在V2X通信中的效能,推动智能交通系统的建设。 这篇研究论文强调了MEC在V2X通信中的重要性,展示了其如何通过降低延迟和提高可靠性来改善道路安全,并为未来的研究和实践提供了有价值的参考。随着汽车行业的智能化发展,MEC技术将成为不可或缺的一部分,为实现更高效、更安全的交通环境做出贡献。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

神经网络在语音识别中的应用:从声波到文字的5个突破

![神经网络在语音识别中的应用:从声波到文字的5个突破](https://img-blog.csdnimg.cn/6c9028c389394218ac745cd0a05e959d.png) # 1. 语音识别的基本原理** 语音识别是一项将人类语音转化为文本的过程,其基本原理是将声波信号转换为数字信号,并通过机器学习算法识别语音中的模式和特征。 语音信号由一系列声波组成,这些声波具有不同的频率和振幅。语音识别系统首先将这些声波数字化,然后提取特征,如梅尔频率倒谱系数 (MFCC) 和线性预测编码 (LPC)。这些特征可以描述语音信号的声学特性,如音高、响度和共振峰。 提取特征后,语音识别
recommend-type

mysql 010338

MySQL错误码010338通常表示“Can't find file: 'filename' (errno: 2)”。这个错误通常是数据库服务器在尝试打开一个文件,比如数据文件、日志文件或者是系统配置文件,但是因为路径错误、权限不足或其他原因找不到指定的文件。"filename"部分会替换为实际出错的文件名,而"errno: 2"是指系统级别的错误号,这里的2通常对应于ENOENT(No such file or directory),也就是找不到文件。 解决这个问题的步骤一般包括: 1. 检查文件路径是否正确无误,确保MySQL服务有权限访问该文件。 2. 确认文件是否存在,如果文件丢失
recommend-type

GIS分析与Carengione绿洲地图创作:技术贡献与绿色项目进展

本文主要探讨了在GIS分析与地图创建领域的实践应用,聚焦于意大利伦巴第地区Peschiera Borromeo的一个名为Carengione Oasis的绿色区域。作者Barbara Marana来自意大利博尔戈莫大学工程与应用科学系,她的研究团队致力于为当地政府提交的一个项目提供技术及地理参照支持。 项目的核心目标是提升并利用Carengione Oasis这一生态空间,通过GIS(地理信息系统)技术对其进行深度分析和规划。研究过程首先进行了一次GIS预分析,通过全面了解研究区域内的各种地理对象和特征,为后续工作奠定了基础。在这个阶段,团队采用了手持GPS导航器进行数据采集,这种方法的优点在于操作简便,能够迅速完成调查,但数据精度相对较低,仅为3至5米,这可能会影响到最终地图的精确度。 所采集的数据被导入到Esri的ArcMap 10.4.1版本中进行处理,这个选择表明了团队对主流GIS软件的信任和应用能力。此外,为了弥补GPS数据不足,他们还利用免费航空摄影图像对难以到达或不便于测量的区域进行了补充编辑,增强了地图的细节和完整性。 研究结果包括一系列专题图、公制地图以及地理参考图,甚至实现了3D虚拟漫游,使读者能够近乎真实地体验该地区。然而,由于数据精度不高,这些成果并未直接用于更新伦巴第官方地图(DBTR),仅部分数据被捐赠给了OpenStreetMap这样的开放数据平台,以供其他研究者和公众使用。 尽管如此,这项工作被视为未来进行更高精度调查的起点,未来有望提高地图的准确性,并将其成果纳入官方地图系统。此外,计划创建一个故事地图,以便更生动地呈现研究团队在Carengione Oasis项目中的探索和发现过程,增强地图背后的故事性和可理解性。 这项GIS研究不仅展示了地理信息系统在规划和管理绿色空间中的实用价值,而且体现了跨学科合作与开放数据共享的理念,对于提升地理信息的可用性和公众参与度具有重要意义。随着技术的进步和精度的提升,GIS将在未来的环保和可持续发展项目中发挥更大作用。