mne pytorch
时间: 2023-11-08 12:04:13 浏览: 166
您的问题是 "mne pytorch"。
我猜测您在问如何将MNE(一个Python库,用于处理脑电图和脑磁图数据)与PyTorch(一个深度学习框架)集成。
首先,您需要将MNE数据转换为PyTorch的张量形式,可以使用MNE-PyTorch(https://mne.tools/stable/auto_tutorials/intro/10_overview.html#id2)来实现这一点。其次,您需要设计适当的神经网络模型对数据进行处理,可以参考PyTorch官方文档(https://pytorch.org/docs/stable/index.html)和教程进行学习。
相关问题
用Pytorch写一个对BCI competition IV的dataset2a实现四分类的LSTM网络的代码
好的,以下是代码实现:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import numpy as np
import mne
class BCICompetitionIVDataset2a(Dataset):
def __init__(self, path):
dataset = mne.io.read_raw_gdf(path)
events, _ = mne.events_from_annotations(dataset)
epochs = mne.Epochs(dataset, events, tmin=0, tmax=4, event_id=dict(hands=0, feet=1)))
self.X = epochs.get_data()
self.y = epochs.events[:, -1]
def __getitem__(self, index):
return torch.FloatTensor(self.X[index]), torch.LongTensor([self.y[index]])
def __len__(self):
return len(self.X)
class LSTMNet(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(LSTMNet, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
if __name__ == '__main__':
# hyperparameters
input_size = 22
hidden_size = 128
num_layers = 2
num_classes = 4
learning_rate = 0.001
num_epochs = 50
batch_size = 64
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# dataset and dataloader
train_dataset = BCICompetitionIVDataset2a('dataset/BCI_IV_2a_gdf/A01T.gdf')
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# model, loss function, optimizer
model = LSTMNet(input_size, hidden_size, num_layers, num_classes).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# train
for epoch in range(num_epochs):
for i, (X, y) in enumerate(train_dataloader):
X, y = X.to(device), y.squeeze().to(device)
outputs = model(X)
loss = criterion(outputs, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i + 1) % 10 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch + 1, num_epochs, i + 1, len(train_dataloader), loss.item()))
# save model
torch.save(model.state_dict(), 'lstmnet.ckpt')
```
这段代码实现了对 BCI competition IV dataset 2a 的读取,使用 LSTM 网络进行四分类任务,并保存了训练好的模型。
需要注意的是,这段代码仅供参考,具体的实现要根据自己的数据集和任务进行调整。
阅读全文