莫兰指数的python代码
时间: 2024-08-15 10:09:24 浏览: 103
基于Python实现全局和局部双变量Moran指数计算
莫兰指数(Moran's I)是一种用于衡量空间自相关的统计指标,通常在地理信息系统(GIS)中用于评估数据点分布的随机程度。在Python中,可以使用`geopandas`库结合`spatial.distance`模块来计算莫兰指数。下面是一个简单的例子:
```python
import geopandas as gpd
from scipy.spatial.distance import pdist, squareform
import numpy as np
# 假设df是GeoDataFrame,包含你的地理位置数据
df = ...
# 计算点到点的距离矩阵
distance_matrix = squareform(pdist(df.geometry))
# 获取邻接权重矩阵 (通常采用距离倒数作为权重)
weights = 1 / distance_matrix
# 确定变量值(例如,人口密度)
variable_values = df['population_density']
# 莫兰指数公式:I = n * sum(wi * (xi - x_mean) * (yi - y_mean)) / sqrt(sum(wi * (xi - x_mean)^2) * sum(wi * (yi - y_mean)^2))
n = len(df)
x_mean = variable_values.mean()
y_mean = ... # 类似地,计算y轴变量的均值
w_sum_x2 = weights.sum(axis=0)**2
w_sum_y2 = weights.sum(axis=1)**2
moran_i = n * np.sum(weights * (variable_values - x_mean) * (variable_values - y_mean)) / np.sqrt(n * w_sum_x2 * w_sum_y2)
print("Moran's I Index:", moran_i)
```
阅读全文