ceemdan-lstm的python实现
时间: 2023-08-05 21:08:23 浏览: 176
你可以使用Python来实现Ceemdan-LSTM模型。首先,你需要安装一些必要的库,如numpy、scipy、matplotlib和tensorflow等。然后,你可以按照以下步骤实现Ceemdan-LSTM模型:
1. 导入所需的库:
```python
import numpy as np
import scipy.signal as sg
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.layers import LSTM, Dense
```
2. 定义Ceemdan函数:
```python
def ceemdan(signal, max_iter):
IMF = []
for _ in range(max_iter):
# 计算信号的均值
mean = np.mean(signal)
# 提取极大值点
maxima = sg.argrelextrema(signal, np.greater)[0]
# 提取极小值点
minima = sg.argrelextrema(signal, np.less)[0]
# 创建上包络线和下包络线
upper = sg.spline(maxima, signal[maxima], np.arange(len(signal)))
lower = sg.spline(minima, signal[minima], np.arange(len(signal)))
# 计算平均包络线
avg_env = (upper + lower) / 2
# 计算细节信号
detail = signal - avg_env
# 判断是否满足停止条件
if np.sum(detail ** 2) < 0.01 * np.sum(signal ** 2):
IMF.append(detail)
break
IMF.append(detail)
signal = detail
return IMF
```
3. 定义Ceemdan-LSTM模型的类:
```python
class CeemdanLSTM:
def __init__(self, max_iter, num_units, num_layers):
self.max_iter = max_iter
self.num_units = num_units
self.num_layers = num_layers
self.model = None
def fit(self, X_train, y_train, epochs, batch_size):
# 进行CEEMDAN分解
IMF = ceemdan(X_train, self.max_iter)
# 创建训练数据
X_train_imf = np.concatenate(IMF[:-1], axis=1)
y_train_imf = IMF[-1]
# 构建LSTM模型
self.model = tf.keras.Sequential()
self.model.add(LSTM(self.num_units, return_sequences=True, input_shape=(X_train_imf.shape[1], X_train_imf.shape[2])))
for _ in range(self.num_layers-1):
self.model.add(LSTM(self.num_units, return_sequences=True))
self.model.add(LSTM(self.num_units))
self.model.add(Dense(1))
# 编译和训练模型
self.model.compile(loss='mean_squared_error', optimizer='adam')
self.model.fit(X_train_imf, y_train_imf, epochs=epochs, batch_size=batch_size)
def predict(self, X_test):
# 进行CEEMDAN分解
IMF = ceemdan(X_test, self.max_iter)
# 创建测试数据
X_test_imf = np.concatenate(IMF[:-1], axis=1)
# 预测结果
y_pred_imf = self.model.predict(X_test_imf)
# 进行反变换
y_pred = np.sum(y_pred_imf, axis=1)
return y_pred
```
这样,你就定义了一个Ceemdan-LSTM模型的类,可以使用`fit`方法训练模型并使用`predict`方法进行预测。你可以根据自己的需求调整Ceemdan分解的迭代次数(`max_iter`)、LSTM的神经元个数(`num_units`)和层数(`num_layers`)等参数。
阅读全文