Python cocos飞机大战

时间: 2024-08-02 12:01:28 浏览: 80
"Cocos2d-x"是一个开源的游戏开发框架,它在Python版本中用于创建2D游戏,其中包括著名的“飞机大战”等经典游戏。Python版的Cocos2d-X提供了一个高级的、基于Python的API,使得开发者能够利用Python语言的简洁性和易读性快速构建游戏内容。 在Cocos2d-x中制作“飞机大战”游戏,通常会涉及以下几个步骤: 1. **设置环境**:安装cocos2d-x引擎及其Python绑定,比如PyCocos2d-x。 2. **设计场景**:创建游戏背景、敌人、玩家飞机等游戏元素,并定义它们的行为和碰撞检测。 3. **编写代码**:使用Python编写控制飞机移动、射击、得分计算等功能的逻辑代码。 4. **动画与效果**:通过精灵图(Sprite Sheets)添加角色动作和特效。 5. **用户输入处理**:捕获键盘或触摸事件,让玩家操作飞机。 6. **测试和优化**:调试游戏,调整性能,确保游戏体验流畅。 如果你对如何开始或者有更具体的问题,可以问我:
相关问题

Cocos Creator飞机大战

Cocos Creator是一个基于JavaScript和TypeScript的游戏开发引擎,非常适合制作2D游戏,包括飞机大战。 下面是一个简单的飞机大战游戏的制作流程: 1. 创建一个新的Cocos Creator项目,选择2D模式。 2. 导入游戏素材,包括飞机、敌人、背景等。 3. 创建游戏场景,添加游戏元素和组件,例如:Sprite、Animation、Physics等。 4. 编写游戏逻辑,包括玩家控制飞机、敌人生成、碰撞检测等。 5. 添加音效和背景音乐。 6. 测试游戏,并进行调试和优化。 7. 导出游戏并发布到各个平台。 以上是一个简单的飞机大战游戏的制作流程,你可以根据自己的需求进行更加详细的制作。

cocos2dx 飞机大战注释

cocos2dx是一款非常流行的开源游戏引擎,它支持多种游戏开发,包括2D游戏。在开发一个简单的飞机大战游戏时,通常需要对游戏的各个组成部分进行注释,以帮助理解代码的功能和流程。以下是一些可能的注释示例: ```cpp // 初始化游戏场景 Scene* GameScene::createScene() { auto scene = Scene::create(); auto layer = GameLayer::create(); // 创建游戏主层 scene->addChild(layer); // 将游戏主层添加到场景中 return scene; } // 游戏主层的初始化 bool GameLayer::init() { if (!Layer::init()) { return false; } // 创建玩家飞机 auto aircraft = Sprite::create("player.png"); // 假设玩家飞机的图片名为player.png aircraft->setPosition(Vec2(visibleSize.width/2, aircraftSize.height)); // 设置飞机的初始位置 this->addChild(aircraft); // 将飞机添加到游戏层中 // 添加触摸监听器,处理玩家的触摸事件来控制飞机移动 auto touchListener = EventListenerTouchOneByOne::create(); touchListener->onTouchBegan = CC_CALLBACK_2(GameLayer::onTouchBegan, this); _eventDispatcher->addEventListenerWithSceneGraphPriority(touchListener, this); // 游戏主循环逻辑处理等... return true; } // 玩家飞机触摸开始的回调函数 bool GameLayer::onTouchBegan(Touch* touch, Event* event) { // 根据触摸的位置,改变玩家飞机的位置 Vec2 touchLocation = touch->getLocation(); // 这里应该有一些逻辑来计算新的飞机位置 // ... return true; } ``` 上述代码展示了如何使用cocos2dx创建一个简单的飞机大战游戏的初始化部分。其中包括创建游戏场景、游戏主层,以及添加玩家飞机和触摸事件监听器的基本逻辑。

相关推荐

zip
import matplotlib.pylab as plt import numpy as np import random from scipy.linalg import norm import PIL.Image class Rbm: def __init__(self,n_visul, n_hidden, max_epoch = 50, batch_size = 110, penalty = 2e-4, anneal = False, w = None, v_bias = None, h_bias = None): self.n_visible = n_visul self.n_hidden = n_hidden self.max_epoch = max_epoch self.batch_size = batch_size self.penalty = penalty self.anneal = anneal if w is None: self.w = np.random.random((self.n_visible, self.n_hidden)) * 0.1 if v_bias is None: self.v_bias = np.zeros((1, self.n_visible)) if h_bias is None: self.h_bias = np.zeros((1, self.n_hidden)) def sigmod(self, z): return 1.0 / (1.0 + np.exp( -z )) def forward(self, vis): #if(len(vis.shape) == 1): #vis = np.array([vis]) #vis = vis.transpose() #if(vis.shape[1] != self.w.shape[0]): vis = vis.transpose() pre_sigmod_input = np.dot(vis, self.w) + self.h_bias return self.sigmod(pre_sigmod_input) def backward(self, vis): #if(len(vis.shape) == 1): #vis = np.array([vis]) #vis = vis.transpose() #if(vis.shape[0] != self.w.shape[1]): back_sigmod_input = np.dot(vis, self.w.transpose()) + self.v_bias return self.sigmod(back_sigmod_input) def batch(self): eta = 0.1 momentum = 0.5 d, N = self.x.shape num_batchs = int(round(N / self.batch_size)) + 1 groups = np.ravel(np.repeat([range(0, num_batchs)], self.batch_size, axis = 0)) groups = groups[0 : N] perm = range(0, N) random.shuffle(perm) groups = groups[perm] batch_data = [] for i in range(0, num_batchs): index = groups == i batch_data.append(self.x[:, index]) return batch_data def rbmBB(self, x): self.x = x eta = 0.1 momentum = 0.5 W = self.w b = self.h_bias c = self.v_bias Wavg = W bavg = b cavg = c Winc = np.zeros((self.n_visible, self.n_hidden)) binc = np.zeros(self.n_hidden) cinc = np.zeros(self.n_visible) avgstart = self.max_epoch - 5; batch_data = self.batch() num_batch = len(batch_data) oldpenalty= self.penalty t = 1 errors = [] for epoch in range(0, self.max_epoch): err_sum = 0.0 if(self.anneal): penalty = oldpenalty - 0.9 * epoch / self.max_epoch * oldpenalty for batch in range(0, num_batch): num_dims, num_cases = batch_data[batch].shape data = batch_data[batch] #forward ph = self.forward(data) ph_states = np.zeros((num_cases, self.n_hidden)) ph_states[ph > np.random.random((num_cases, self.n_hidden))] = 1 #backward nh_states = ph_states neg_data = self.backward(nh_states) neg_data_states = np.zeros((num_cases, num_dims)) neg_data_states[neg_data > np.random.random((num_cases, num_dims))] = 1 #forward one more time neg_data_states = neg_data_states.transpose() nh = self.forward(neg_data_states) nh_states = np.zeros((num_cases, self.n_hidden)) nh_states[nh > np.random.random((num_cases, self.n_hidden))] = 1 #update weight and biases dW = np.dot(data, ph) - np.dot(neg_data_states, nh) dc = np.sum(data, axis = 1) - np.sum(neg_data_states, axis = 1) db = np.sum(ph, axis = 0) - np.sum(nh, axis = 0) Winc = momentum * Winc + eta * (dW / num_cases - self.penalty * W) binc = momentum * binc + eta * (db / num_cases); cinc = momentum * cinc + eta * (dc / num_cases); W = W + Winc b = b + binc c = c + cinc self.w = W self.h_bais = b self.v_bias = c if(epoch > avgstart): Wavg -= (1.0 / t) * (Wavg - W) cavg -= (1.0 / t) * (cavg - c) bavg -= (1.0 / t) * (bavg - b) t += 1 else: Wavg = W bavg = b cavg = c #accumulate reconstruction error err = norm(data - neg_data.transpose()) err_sum += err print epoch, err_sum errors.append(err_sum) self.errors = errors self.hiden_value = self.forward(self.x) h_row, h_col = self.hiden_value.shape hiden_states = np.zeros((h_row, h_col)) hiden_states[self.hiden_value > np.random.random((h_row, h_col))] = 1 self.rebuild_value = self.backward(hiden_states) self.w = Wavg self.h_bais = b self.v_bias = c def visualize(self, X): D, N = X.shape s = int(np.sqrt(D)) if s == int(np.floor(s)): num = int(np.ceil(np.sqrt(N))) a = np.zeros((num*s + num + 1, num * s + num + 1)) - 1.0 x = 0 y = 0 for i in range(0, N): z = X[:,i] z = z.reshape(s,s,order='F') z = z.transpose() a[x*s+1+x - 1:x*s+s+x , y*s+1+y - 1:y*s+s+y ] = z x = x + 1 if(x >= num): x = 0 y = y + 1 d = True else: a = X return a def readData(path): data = [] for line in open(path, 'r'): ele = line.split(' ') tmp = [] for e in ele: if e != '': tmp.append(float(e.strip(' '))) data.append(tmp) return data if __name__ == '__main__': data = readData('data.txt') data = np.array(data) data = data.transpose() rbm = Rbm(784, 100,max_epoch = 50) rbm.rbmBB(data) a = rbm.visualize(data) fig = plt.figure(1) ax = fig.add_subplot(111) ax.imshow(a) plt.title('original data') rebuild_value = rbm.rebuild_value.transpose() b = rbm.visualize(rebuild_value) fig = plt.figure(2) ax = fig.add_subplot(111) ax.imshow(b) plt.title('rebuild data') hidden_value = rbm.hiden_value.transpose() c = rbm.visualize(hidden_value) fig = plt.figure(3) ax = fig.add_subplot(111) ax.imshow(c) plt.title('hidden data') w_value = rbm.w d = rbm.visualize(w_value) fig = plt.figure(4) ax = fig.add_subplot(111) ax.imshow(d) plt.title('weight value(w)') plt.show()

最新推荐

recommend-type

Cocos2dx中UIWebView替换为WKWebView

在iOS开发中,Cocos2dx是一个广泛使用的游戏开发框架,它允许开发者创建跨平台的2D和3D游戏。然而,随着Apple对App Store审核政策的调整,使用UIWebView的App将不再被接受,因为Apple已经将其列为弃用API。在2020年...
recommend-type

cocos瓦片地图详解

"cocos瓦片地图详解" cocos2dx 瓦片地图是一种高效的图形渲染技术,通过将大图分割成小图块(瓦片)来减少内存消耗。瓦片地图可以分为直角地图、斜角地图和六边形地图三种分类。 直角地图 直角地图是使用方形瓦片...
recommend-type

cocos2dx_lua开发笔记

【cocos2dx_lua开发笔记】是一篇个人实践总结,主要涵盖了使用cocos2dx_lua进行游戏开发的一些关键点,包括图层创建、WebView的使用、动态布局进度条的实现以及骨骼动画的操作方法。以下是对这些知识点的详细解析: ...
recommend-type

cocoscreator不全屏,显示状态栏设置方法

在CocosCreator中,有时我们可能需要让游戏不全屏显示,并保留设备的状态栏,比如在Android和iOS平台上。这通常是为了保持用户与系统交互的能力,例如查看时间、电量等信息。下面将详细介绍如何在CocosCreator中实现...
recommend-type

cocos2d-x API中文文档

在Cocos2d-x的家族中,还有其他分支引擎,如Cocos2d-iPhone、Cocos2d-python、Cocos2d-xna等,它们各自支持不同的平台和编程语言,满足不同开发者的需求。例如,Cocos2d-iPhone专注于iOS平台,使用Objective-C或...
recommend-type

构建Cadence PSpice仿真模型库教程

在Cadence软件中,PSPICE仿真模型库的建立是一个关键步骤,它有助于用户有效地模拟和分析电路性能。以下是一份详细的指南,教你如何在Cadence环境中利用厂家提供的器件模型创建一个实用的仿真库。 首先,从新建OLB库开始。在Capture模块中,通过File菜单选择New,然后选择Library,创建一个新的OLB库文件,如lm6132.olb。接下来,右键点击新建的库文件并选择NewPart,这将进入器件符号绘制界面,用户需要根据所选器件的特性绘制相应的符号,并在绘制完成后保存并关闭编辑窗口。 接着,要建立OLB库与LIB库之间的关联。在File选项卡中,找到需要添加模型的元件文件夹,右键选择AssociatePspiceModel,选择对应的LIB文件路径。在这个过程中,可能会遇到端点编号匹配的问题。可以通过查看LIB文件中的端点信息,理解其含义,然后在DefinePinMapping窗口中设置每个SymbolPin的正确对应关系,确保模拟时信号传输的准确性。 仿真环境的设置同样重要。在File中选择要仿真的DSN设计文件,然后在Pspice菜单中新建或编辑Simulation Profile。配置时,特别关注与LIB库相关的设置。在ConfigurationFiles标签下的Library类别中,选择包含所需模型的LIB文件路径,并将其添加到Design或Global范围内。如果存在默认的nom.lib库(全局库),确保它包含了必要的库文件。 如果在建立库之前DSN文件中已包含设备,可能需要更新DesignCache以反映新添加的模型。这可以通过清理并重新加载设计来完成,以确保所有仿真数据的同步。 总结来说,建立PSPICE仿真模型库涉及到从创建新的OLB库到关联实际器件模型,再到设置合适的仿真环境参数。这一步骤不仅有助于提高电路设计的精确性,还能加速后续的仿真分析工作。熟练掌握这一过程,对于提升工程效率和电路设计质量至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实时分析可视化:工具、技术与应用揭秘

![实时分析可视化:工具、技术与应用揭秘](https://tiiny.host/blog/assets/images/plotly-js-01.jpg) # 1. 实时分析可视化概述 在当今数据驱动的业务环境中,能够实时分析和可视化数据变得至关重要。随着数据量的爆炸性增长和对快速决策的需求日益增加,企业必须采用实时分析可视化技术,以便更快地洞察和响应市场变化。实时分析可视化不仅帮助我们理解过去和现在,更是预测未来的关键。 ## 实时分析可视化的基本要素 实时分析可视化依赖于以下三个基本要素: 1. **数据源**:数据的采集来源,如物联网设备、在线服务、社交媒体等。 2. **数据处理*
recommend-type

编写python程序,要求模拟扔骰子游戏。要求扔n次,统计各点数的次数与概率。

要编写一个模拟扔骰子游戏的Python程序,可以通过以下步骤实现: 1. 导入必要的模块,例如`random`模块用于生成随机数,`collections`模块中的`Counter`类用于统计点数出现的次数。 2. 创建一个函数来模拟扔一次骰子,返回1到6之间的随机点数。 3. 在主程序中,设置扔骰子的次数`n`,然后使用循环来模拟扔`n`次骰子,并记录每次出现的点数。 4. 使用`Counter`来统计每个点数出现的次数,并计算每个点数出现的概率。 5. 打印每个点数出现的次数和概率。 下面是一个简单的代码示例: ```python import random from collect
recommend-type

VMware 10.0安装指南:步骤详解与网络、文件共享解决方案

本篇文档是关于VMware 10的安装手册,详细指导用户如何进行VMware Workstation 10.0的安装过程,以及解决可能遇到的网络问题和文件共享问题。以下是安装步骤和相关建议: 1. **开始安装**:首先,双击运行VMware-workstation-full-10.0.0-1295980.exe,启动VMware Workstation 10.0中文安装向导,进入安装流程。 2. **许可协议**:在安装过程中,用户需接受许可协议的条款,确认对软件的使用和版权理解。 3. **安装类型**:推荐选择典型安装,适合大多数用户需求,仅安装基本功能。 4. **安装路径**:建议用户根据个人需求更改安装路径,以便于后期管理和文件管理。 5. **软件更新**:安装过程中可选择不自动更新,以避免不必要的下载和占用系统资源。 6. **改进程序**:对于帮助改进VMwareWorkstation的选项,用户可以根据个人喜好选择是否参与。 7. **快捷方式**:安装完成后,会自动生成VM虚拟机的快捷方式,方便日常使用。 8. **序列号与注册**:安装过程中需要输入购买的序列号,如果找不到,可以借助附带的注册机vm10keygen.exe获取。 9. **安装完成**:完成所有设置后,点击安装,等待程序完整安装到电脑上。 **网络问题**:建议用户采用NAT网络连接方式,以简化网络配置和提高虚拟机的网络性能。链接地址为<http://wenku.baidu.com/link?url=PM0mTUKKr6u1Qs1fsomBzYY_sJutMwz1upPelsdvgnD6lj06dfqa1EWFGEJ63OxLS_LESe8JXMDZ8520BEGZtJFc_YnX1tV6jV0Fmu-4MBi>,如有疑问或问题,可参考此资源。 **文件共享**:对于文件传输,个人习惯使用共享方式,通过链接<http://wenku.baidu.com/link?url=BRr7PXLnX9ATDoNBk1alKPsjWRfFlep_QqikwF_UNw23tvtUEGd0onprLQeb3sKhquf6bInlueBhgdJHggo0eP_jIZsi7l0Wr072Z1p56ty>获取相关教程或下载工具,以实现虚拟机与主机之间的文件共享。 以上就是VMware 10的安装指南和常见问题解决方案,对于初次接触或者需要解决安装难题的用户来说,这份文档提供了详尽的操作步骤和实用建议。