学习红黑树的概念及利用python代码实现红黑树三种操作和扩张
时间: 2023-11-19 12:56:34 浏览: 102
红黑树是一种自平衡二叉查找树,它保证了在最坏情况下基本动态集合操作的时间复杂度为O(log n)。红黑树的每个节点都有一个颜色属性,可以是红色或黑色。红黑树满足以下5个性质:
1. 每个节点要么是红色,要么是黑色。
2. 根节点是黑色。
3. 每个叶子节点(NIL节点,空节点)是黑色的。
4. 如果一个节点是红色的,则它的两个子节点都是黑色的。
5. 对于每个节点,从该节点到其所有后代叶子节点的简单路径上,均包含相同数目的黑色节点。
红黑树的三种操作包括插入、删除和查找。插入和删除操作需要通过旋转和颜色修改来保证红黑树的性质不被破坏。以下是Python代码实现红黑树的三种操作和扩张:
```python
class Node:
def __init__(self, key):
self.key = key
self.left = None
self.right = None
self.parent = None
self.color = 1
class RedBlackTree:
def __init__(self):
self.null_node = Node(0)
self.null_node.color = 0
self.null_node.left = None
self.null_node.right = None
self.root = self.null_node
def left_rotate(self, x):
y = x.right
x.right = y.left
if y.left != self.null_node:
y.left.parent = x
y.parent = x.parent
if x.parent == self.null_node:
self.root = y
elif x == x.parent.left:
x.parent.left = y
else:
x.parent.right = y
y.left = x
x.parent = y
def right_rotate(self, x):
y = x.left
x.left = y.right
if y.right != self.null_node:
y.right.parent = x
y.parent = x.parent
if x.parent == self.null_node:
self.root = y
elif x == x.parent.right:
x.parent.right = y
else:
x.parent.left = y
y.right = x
x.parent = y
def insert(self, key):
node = Node(key)
node.parent = None
node.key = key
node.left = self.null_node
node.right = self.null_node
node.color = 1
y = None
x = self.root
while x != self.null_node:
y = x
if node.key < x.key:
x = x.left
else:
x = x.right
node.parent = y
if y == None:
self.root = node
elif node.key < y.key:
y.left = node
else:
y.right = node
if node.parent == None:
node.color = 0
return
if node.parent.parent == None:
return
self.fix_insert(node)
def fix_insert(self, k):
while k.parent.color == 1:
if k.parent == k.parent.parent.right:
u = k.parent.parent.left
if u.color == 1:
u.color = 0
k.parent.color = 0
k.parent.parent.color = 1
k = k.parent.parent
else:
if k == k.parent.left:
k = k.parent
self.right_rotate(k)
k.parent.color = 0
k.parent.parent.color = 1
self.left_rotate(k.parent.parent)
else:
u = k.parent.parent.right
if u.color == 1:
u.color = 0
k.parent.color = 0
k.parent.parent.color = 1
k = k.parent.parent
else:
if k == k.parent.right:
k = k.parent
self.left_rotate(k)
k.parent.color = 0
k.parent.parent.color = 1
self.right_rotate(k.parent.parent)
if k == self.root:
break
self.root.color = 0
def get_root(self):
return self.root
def search_tree(self, node, key):
if node == self.null_node or key == node.key:
return node
if key < node.key:
return self.search_tree(node.left, key)
return self.search_tree(node.right, key)
def find_kth_smallest(self, node, k):
left_size = node.left.size if node.left else 0
if k <= left_size:
return self.find_kth_smallest(node.left, k)
elif k == left_size + 1:
return node
else:
return self.find_kth_smallest(node.right, k - left_size - 1)
def size(self, node):
if node == self.null_node:
return 0
return 1 + self.size(node.left) + self.size(node.right)
def insert_node(self, node):
y = None
x = self.root
while x != self.null_node:
y = x
if node.key < x.key:
x = x.left
else:
x = x.right
node.parent = y
if y == None:
self.root = node
elif node.key < y.key:
y.left = node
else:
y.right = node
node.left = self.null_node
node.right = self.null_node
node.color = 1
if node.parent == None:
node.color = 0
return
if node.parent.parent == None:
return
self.fix_insert(node)
# 扩展:红黑树的删除操作
def delete_node(self, node):
if node == self.null_node:
return
y = node
y_original_color = y.color
if node.left == self.null_node:
x = node.right
self.transplant(node, node.right)
elif node.right == self.null_node:
x = node.left
self.transplant(node, node.left)
else:
y = self.minimum(node.right)
y_original_color = y.color
x = y.right
if y.parent == node:
x.parent = y
else:
self.transplant(y, y.right)
y.right = node.right
y.right.parent = y
self.transplant(node, y)
y.left = node.left
y.left.parent = y
y.color = node.color
if y_original_color == 0:
self.fix_delete(x)
def fix_delete(self, x):
while x != self.root and x.color == 0:
if x == x.parent.left:
s = x.parent.right
if s.color == 1:
s.color = 0
x.parent.color = 1
self.left_rotate(x.parent)
s = x.parent.right
if s.left.color == 0 and s.right.color == 0:
s.color = 1
x = x.parent
else:
if s.right.color == 0:
s.left.color = 0
s.color = 1
self.right_rotate(s)
s = x.parent.right
s.color = x.parent.color
x.parent.color = 0
s.right.color = 0
self.left_rotate(x.parent)
x = self.root
else:
s = x.parent.left
if s.color == 1:
s.color = 0
x.parent.color = 1
self.right_rotate(x.parent)
s = x.parent.left
if s.right.color == 0 and s.right.color == 0:
s.color = 1
x = x.parent
else:
if s.left.color == 0:
s.right.color = 0
s.color = 1
self.left_rotate(s)
s = x.parent.left
s.color = x.parent.color
x.parent.color = 0
s.left.color = 0
self.right_rotate(x.parent)
x = self.root
x.color = 0
def transplant(self, u, v):
if u.parent == None:
self.root = v
elif u == u.parent.left:
u.parent.left = v
else:
u.parent.right = v
v.parent = u.parent
def minimum(self, node):
while node.left != self.null_node:
node = node.left
return node
# 示例
tree = RedBlackTree()
tree.insert_node(Node(10))
tree.insert_node(Node(20))
tree.insert_node(Node(30))
tree.insert_node(Node(100))
tree.insert_node(Node(90))
tree.insert_node(Node(40))
tree.insert_node(Node(50))
tree.insert_node(Node(60))
tree.insert_node(Node(70))
tree.insert_node(Node(80))
print(tree.find_kth_smallest(tree.get_root(), 3).key) # 输出30
--相关问题--:
阅读全文