paddleocr训练模型转成onxx
时间: 2023-09-08 11:09:41 浏览: 239
您好!要将PaddleOCR训练的模型转换为ONNX格式,您可以按照以下步骤进行操作:
1. 安装依赖:
```bash
pip install paddlepaddle paddleocr onnxruntime
```
2. 导入PaddleOCR和相关库:
```python
import paddleocr
import paddle.fluid as fluid
import onnx
import onnxruntime
```
3. 加载PaddleOCR训练的模型:
```python
paddleocr.OCR(rec_img_shapes=[3, 32, 320], rec_char_type='ch', \
use_gpu=False, use_angle_cls=True)
model_path = 'your_model_path'
model = paddleocr.load_model(model_path)
```
4. 定义输入和输出的变量:
```python
input_names = ['image']
output_names = ['ctc_greedy_decoder_0.tmp_0']
input_spec = fluid.core.VarDesc.VarType.LOD_TENSOR
output_spec = fluid.core.VarDesc.VarType.LOD_TENSOR
```
5. 创建PaddlePaddle的Executor,并加载模型参数:
```python
exe = fluid.Executor(fluid.CPUPlace())
[inference_program, feed_target_names, fetch_targets] = \
fluid.io.load_inference_model(dirname=model_path, executor=exe)
```
6. 使用PaddlePaddle的Fluid框架将模型转换为ONNX格式:
```python
paddle.onnx.export(
inference_program,
path="model.onnx",
input_spec=[(input_names[0], input_spec)],
output_spec=[(output_names[0], output_spec)],
opset_version=11,
enable_onnx_checker=True)
```
7. 至此,您已经成功将PaddleOCR训练的模型转换为ONNX格式,并保存为"model.onnx"文件。
请确保您按照上述步骤操作,并将"your_model_path"替换为您的模型路径。如果您使用的是GPU,请
阅读全文