用python做典型相关性分析
时间: 2023-09-17 09:14:50 浏览: 149
典型相关分析
要使用Python进行典型相关性分析,可以使用sklearn库中的cross_decomposition模块提供的CCA方法。以下是一个示例代码,使用企鹅数据进行CCA分析:
```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from sklearn.cross_decomposition import CCA
filename = "penguins.csv"
df = pd.read_csv(filename)
df = df.dropna()
X = df[['bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 'body_mass_g']]
Y = df[['species']]
cca = CCA(n_components=2)
cca.fit(X, Y)
X_c, Y_c = cca.transform(X, Y)
plt.scatter(X_c[:, 0], Y_c[:, 0])
plt.xlabel('Canonical Variable 1')
plt.ylabel('Canonical Variable 2')
plt.show()
```
在这个例子中,我们首先使用pandas库读取并清理企鹅数据集。然后,我们选择了X和Y变量,其中X包含了企鹅的几个数值特征,Y包含了企鹅的物种信息。然后,我们使用CCA模型进行训练,并将X和Y转换为CCA的标准化变量。最后,我们在散点图上绘制了经过CCA转换后的变量。这可以帮助我们可视化两个变量集之间的典型相关性。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *3* [使用Python进行典型相关性分析(Canonical Correlation Analysis)](https://blog.csdn.net/CodeWG/article/details/131075814)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *2* [典型相关分析介绍及python实现](https://blog.csdn.net/Python_xiaowu/article/details/122258245)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文