# 训练3001个批次 for step in range(3001): # 训练一个批次数据,返回cost值 cost = model.train_on_batch(x_data,y_data) # 每1000个batch打印一次cost值 if step % 1000 == 0: # 定义一个2*2的图,当前是第i/1000+1个图 plt.subplot(2,2,step/1000+1) # 把x_data喂到模型中获得预测值 prediction_value = model.predict(x_data) # 画散点图 plt.scatter(x_data,y_data) # 画模型预测曲线图 plt.plot(x_data,prediction_value,'r-',lw=5) # 不显示坐标 plt.axis('off') # 图片的标题设置 plt.title("picture:" + str(int(step/1000+1))) plt.show()
时间: 2024-04-18 10:26:35 浏览: 39
这段代码是一个简单的神经网络模型的训练过程,使用了3001个批次的数据进行训练。每1000个批次打印一次cost值,并绘制相应的散点图和模型预测曲线图。
在训练过程中,首先使用模型的train_on_batch方法训练一个批次的数据,得到cost值。然后判断是否达到每1000个批次,如果是,则进行图形绘制。
在图形绘制部分,首先定义一个2*2的图,并确定当前是第几个图。然后将x_data输入模型,获得预测值prediction_value。接着绘制散点图和模型预测曲线图,并设置标题。最后,通过plt.show()显示图像。
需要注意的是,此代码段缺少数据的准备部分,如x_data和y_data的赋值,以及模型的创建和编译过程。这些部分需要根据具体情况进行补充。
相关问题
def train(train_dataset, val_dataset, batch_size, epochs, learning_rate, wt_decay, print_cost=True, isPlot=True): # 加载数据集并分割batch train_loader = data.DataLoader(train_dataset, batch_size) # 构建模型 model = FaceCNN() # 加载模型 # model = torch.load('./model/model-best.pth') model.to(device) # 损失函数和优化器 compute_loss = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=learning_rate, weight_decay=wt_decay) loss_values = [] train_acc_values = [] val_acc_values = [] for epoch in range(epochs): loss = 0 model.train() model = model.to(device) for images, labels in train_loader: optimizer.zero_grad() # 梯度清零 outputs = model.forward(images.to(device)) loss = compute_loss(outputs, labels.to(device)) loss.backward() # 更新参数 optimizer.step() # 打印损失值 if print_cost: print('epoch{}: train_loss:'.format(epoch + 1), loss.item()) # 评估模型准确率 if epoch != 0: model.eval() acc_train = validate(model, train_dataset, batch_size) acc_val = validate(model, val_dataset, batch_size) print('acc_train: %.1f %%' % (acc_train * 100)) print('acc_val: %.1f %%' % (acc_val * 100)) train_acc_values.append(acc_train) val_dataset.append(acc_val) loss_values.append(loss.item()) if isPlot: plt.plot(loss_values, label='损失') plt.plot(train_acc_values, label='训练准确率') plt.plot(val_acc_values, label='验证准确率') plt.xlabel('Epoch') plt.ylabel('Value') plt.legend() plt.show() return model
这段代码是用来训练一个模型的函数。它接受训练集、验证集、批次大小、训练轮数、学习率、权重衰减等参数。函数首先加载训练集并构建一个模型对象。然后,定义了损失函数和优化器。接下来,函数通过循环迭代每个训练轮次,并在每轮中计算损失、更新参数,并打印损失值。如果 `print_cost` 参数设置为 True,则会打印出每个训练轮次的损失值。
在每个训练轮次结束后,函数会评估模型在训练集和验证集上的准确率,并打印出来。这里调用了之前定义的 `validate` 函数来计算准确率。
最后,函数可以选择绘制损失值、训练准确率和验证准确率的图像,并返回训练好的模型对象。
需要注意的是,这段代码中使用了一些常见的深度学习库函数和对象,如 PyTorch 的 DataLoader、CrossEntropyLoss、SGD 优化器等。此外,函数中还调用了之前定义的 `validate` 函数和一些绘图函数。
如果你还有其他问题或需要进一步解释,请随时告诉我!
from model import Model import numpy as np import torch from torchvision.datasets import mnist from torch.nn import CrossEntropyLoss from torch.optim import SGD from torch.utils.data import DataLoader from torchvision.transforms import ToTensor if __name__ == '__main__': batch_size = 256 train_dataset = mnist.MNIST(root='./train', train=True, transform=ToTensor()) test_dataset = mnist.MNIST(root='./test', train=False, transform=ToTensor()) train_loader = DataLoader(train_dataset, batch_size=batch_size) test_loader = DataLoader(test_dataset, batch_size=batch_size) model = Model() sgd = SGD(model.parameters(), lr=1e-1) cost = CrossEntropyLoss() epoch = 100 for _epoch in range(epoch): model.train() for idx, (train_x, train_label) in enumerate(train_loader): label_np = np.zeros((train_label.shape[0], 10)) sgd.zero_grad() predict_y = model(train_x.float()) loss = cost(predict_y, train_label.long()) if idx % 10 == 0: print('idx: {}, loss: {}'.format(idx, loss.sum().item())) loss.backward() sgd.step() correct = 0 _sum = 0 model.eval() for idx, (test_x, test_label) in enumerate(test_loader): predict_y = model(test_x.float()).detach() predict_ys = np.argmax(predict_y, axis=-1) label_np = test_label.numpy() _ = predict_ys == test_label correct += np.sum(_.numpy(), axis=-1) _sum += _.shape[0] print('accuracy: {:.2f}'.format(correct / _sum)) torch.save(model, 'models/mnist_{:.2f}.pkl'.format(correct / _sum))
这段代码是一个简单的使用PyTorch训练MNIST数据集的示例代码。它包括了模型的定义、数据加载、训练和测试的过程。
首先,它导入了所需的库和模块,包括了模型定义(`Model`)、数据集(`mnist`)、数据加载器(`DataLoader`)、损失函数(`CrossEntropyLoss`)、优化器(`SGD`)以及数据转换(`ToTensor`)。
然后,在`if __name__ == '__main__':`的条件下,定义了一些训练所需的参数,如批量大小(`batch_size`)、训练集和测试集的数据加载器(`train_loader`和`test_loader`)。接着,创建了一个模型实例(`model`)和优化器实例(`sgd`),以及定义了损失函数(`cost`)和训练的轮数(`epoch`)。
接下来,通过一个循环迭代训练数据集的每个批次。在每个批次中,将模型设置为训练模式(`model.train()`),将优化器的梯度置零(`sgd.zero_grad()`),通过模型前向传播得到预测结果(`predict_y`),计算损失(`loss`),并进行反向传播和参数更新(`loss.backward()`和`sgd.step()`)。同时,每训练10个批次,打印出当前的损失值。
接着,通过另一个循环对测试集进行预测,并计算准确率。在每个测试批次中,将模型设置为评估模式(`model.eval()`),通过模型前向传播得到预测结果(`predict_y`),将预测结果转换为类别标签(`predict_ys`),并与真实标签进行比较,统计正确预测的数量(`correct`)和总样本数量(`_sum`)。最后,计算并打印出准确率。
最后,将训练好的模型保存到文件中,文件名中包含了准确率。
这段代码的作用是训练一个简单的模型来分类MNIST手写数字数据集,并保存训练好的模型。
阅读全文