stm32f103 高通滤波

时间: 2023-08-05 16:00:15 浏览: 90
STM32F103高通滤波是一种用于消除低频信号的滤波方法。高通滤波器的作用是使高于某个特定频率的信号通过,而将低于该频率的信号削弱或消除。这种滤波方法常用于音频处理、通信等领域。 在STM32F103中实现高通滤波可以通过使用其内置的模拟滤波器或者数字滤波器来实现。其中,模拟滤波器可用于处理模拟信号,数字滤波器则适用于处理数字信号。 在使用模拟滤波器实现高通滤波时,可以使用电容、电感等元件组成RC高通滤波器电路。将输入信号经过该电路后,低频信号将被削弱或消除,而高频信号则可以通过。 使用数字滤波器实现高通滤波时,可以使用FIR(Finite Impulse Response)或IIR(Infinite Impulse Response)滤波器。FIR滤波器通过将输入信号与一组系数进行卷积运算,得到滤波后的输出信号。而IIR滤波器则通过将输出信号与滤波器的状态变量进行运算,得到滤波后的输出信号。这些数字滤波器可以在STM32F103的硬件模块或者通过软件编程来实现。 使用高通滤波器可以有效滤除低频噪声,提高系统对于高频信号的响应能力,从而提高系统的信号处理性能。在设计STM32F103的高通滤波器时,需要考虑信号的频率范围、滤波器的响应特性以及系统的实时性要求等方面,以确保高通滤波器能够满足实际应用的需求。
相关问题

stm32f103自适应滤波

STM32F103自适应滤波是指利用STM32F103芯片的处理能力和自适应滤波算法,对信号进行滤波处理以消除噪声或提取所需信息。 自适应滤波算法是一种根据输入信号的特性来调整滤波器参数的方法,其核心思想是通过对输入信号的实时分析,不断更新滤波器的响应来适应输入信号的变化。在STM32F103中,可以使用自适应滤波算法,如LMS(最小均方误差算法)或RLS(递推最小二乘算法)等来实现。 具体操作流程如下: 1. 获取输入信号:通过STM32F103的模数转换器(ADC)模块获取待滤波的输入信号。 2. 确定滤波器初始参数:根据实际情况,初始化滤波器的参数,如滤波器阶数、初始权重系数等。 3. 进行滤波运算:将输入信号输入滤波器中进行滤波运算,得到滤波后的输出信号。 4. 根据误差调整滤波器参数:比较输出信号与期望信号(理想信号或参考信号)产生的误差,根据误差大小和方向调整滤波器参数。 5. 更新滤波器参数:根据滤波器调整策略,对滤波器的权重系数进行调整,从而更好地适应输入信号的变化。 6. 重复步骤3-5,直到输出信号达到预期效果。 通过这种自适应滤波的方法,可以有效地去除输入信号中的噪声或干扰信号,提高信号的质量,从而更好地满足实际应用需求。在STM32F103上实现自适应滤波需要编写相应的代码,并结合相应的算法库进行操作。

stm32f103 实现高通滤波

高通滤波是一种常用的信号处理技术,它可以滤除低频信号,保留高频信号。在STM32F103单片机中,可以通过使用定时器和中断来实现高通滤波。 首先,需要设置一个定时器,将其配置为自动重载模式,设置一个适当的计数值和分频系数,使得定时器的计数周期可以适应信号频率。然后,开启定时器中断,在中断处理函数中,将采样值传入高通滤波器中进行处理,将处理后的结果输出。 具体的代码实现如下: ```c #include "stm32f10x.h" #define SAMPLE_FREQ 1000 //采样频率 #define CUTOFF_FREQ 50 //截止频率 #define TIMER_PRESCALER 72 //定时器分频系数 volatile uint16_t adc_value = 0; //采样值 volatile float filtered_value = 0; //滤波后的值 void TIM2_IRQHandler(void) { if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET) { //取得ADC采样值 adc_value = ADC_GetConversionValue(ADC1); //高通滤波器处理 float RC = 1 / (2 * 3.14 * CUTOFF_FREQ); float dt = 1.0 / SAMPLE_FREQ; float alpha = RC / (RC + dt); filtered_value = alpha * filtered_value + alpha * (adc_value - filtered_value); //清除中断标志位 TIM_ClearITPendingBit(TIM2, TIM_IT_Update); } } int main(void) { //初始化ADC ADC_InitTypeDef ADC_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; ADC_InitStructure.ADC_ScanConvMode = DISABLE; ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfChannel = 1; ADC_Init(ADC1, &ADC_InitStructure); ADC_Cmd(ADC1, ENABLE); ADC_ResetCalibration(ADC1); while(ADC_GetResetCalibrationStatus(ADC1)); ADC_StartCalibration(ADC1); while(ADC_GetCalibrationStatus(ADC1)); ADC_SoftwareStartConvCmd(ADC1, ENABLE); //初始化定时器2 TIM_TimeBaseInitTypeDef TIM_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); TIM_InitStructure.TIM_Period = (SystemCoreClock / TIMER_PRESCALER) / SAMPLE_FREQ - 1; TIM_InitStructure.TIM_Prescaler = TIMER_PRESCALER - 1; TIM_InitStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_InitStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2, &TIM_InitStructure); TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); TIM_Cmd(TIM2, ENABLE); //初始化NVIC NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); while(1) { //处理滤波后的值 //... } } ``` 需要注意的是,高通滤波器的截止频率和采样频率需要根据具体的应用场景进行调整,以达到最佳的滤波效果。同时,在采样值和滤波后的值之间的处理过程也需要根据具体的应用场景进行设计。

相关推荐

最新推荐

recommend-type

stm32f103数据手册

完全免积分!!!!! 哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈...
recommend-type

启明欣欣stm32f103rct6开发板原理图

启明欣欣stm32f103rct6开发板原理图 哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈...
recommend-type

STM32F103RC_PWM二级RC滤波实现DAC

RC_PWM二级RC滤波实现DAC(总结 Stm32F103 PWM经过二阶RC低通滤波产生DAC 原理:)
recommend-type

STM32F103单片机系统时钟部分归纳

——时钟控制(RCC) 三种不同的时钟源可用作系统时钟(SYSCLOCK): HIS振荡器时钟(由芯片内部RC振荡器提供) HSE振荡器时钟(由芯片外部晶体振荡器提供) ... LSE外部32.768kHz低速外部输入时钟,用于驱动RTC
recommend-type

STM32F103RET6TR中文数据手册.pdf

STM32F103RET6TR中文数据手册,同样适用于STM32F103RE 、 STM32F103ZE 、 STM32F103VE、STM32F103RD、 STM32F103VD、 STM32F103ZD、STM32F103RC、 STM32F103VC、 STM32F103ZC
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。