stm32iic主从机通信

时间: 2023-10-01 08:08:13 浏览: 123
STM32是一系列由STMicroelectronics开发的32位微控制器,其中包括I2C总线接口,可以实现主从机通信。I2C(Inter-Integrated Circuit)是一种串行通信协议,可以连接多个设备,其中一个设备充当主机,其他设备作为从机。 在STM32上实现I2C主从机通信的步骤如下: 1. 配置GPIO:选择合适的GPIO引脚作为I2C的SCL(时钟线)和SDA(数据线),并将它们配置为I2C功能。 2. 初始化I2C:使用STM32提供的库函数初始化I2C模块,设置通信速率、工作模式等参数。 3. 配置从机地址:设置从机的地址,用于主机与从机之间的通信。 4. 启动I2C:启动I2C总线,并选择主机或从机模式。 5. 主机发送数据:如果STM32作为主机发送数据给从机,可以使用库函数发送数据。 6. 从机接收数据:如果STM32作为从机接收数据,可以使用库函数接收数据。 7. 主机接收数据:如果STM32作为主机接收从机发送的数据,可以使用库函数接收数据。 8. 关闭I2C:完成通信后,关闭I2C总线。 以上是基本的步骤,具体的实现细节可以参考STMicroelectronics提供的STM32的官方文档和相应的开发板示例代码。
相关问题

两块stm32 iic主从机的通信

在STM32中,I2C通信是很常见的一种通信方式。它主要用于将多个设备连接在一起,让它们之间能够进行数据传输。I2C通信协议是由主机和从机组成的。其中,主机是I2C控制器,它发起通信并控制整个通信过程;而从机则是需要与主机通信的设备,从机需要接收主机发送过来的指令并给出回应。 在两块STM32上进行I2C通信的具体步骤如下: 第一步,配置I2C外设。根据I2C规范进行配置,包括设置I2C时钟频率、工作模式、地址寄存器等。 第二步,主机将指令发送给从机。主机发送指令的过程主要包括:向从机发出起始条件、写入从机地址、写入指令数据等。 第三步,从机接收指令。从机在接收到指令后,需要进行解析,并返回相应的响应。 第四步,主机接收从机的响应。主机在接收到从机的响应后,进行解析,并根据需要进行下一次通信。 对于两块STM32之间的I2C通信,需要注意以下几个问题: 1. 确认I2C地址。主从之间需要进行地址匹配,确保通信能够建立。 2. 确认时钟同步。主从设备之间的时钟差异需要进行同步处理,确保通信的稳定性。 3. 错误处理。在通信过程中,可能会出现一些错误,需要进行相应的处理,保证通信的正确和稳定。 总之,I2C通信是一种非常重要和实用的通信方式,在进行STM32的开发时,需要充分理解和掌握这种通信协议。

stm32 iic 主从 代码

### 回答1: STM32的I2C通信模块可以同时设置为主机和从机模式。下面是一个简单的主从通信的示例代码: 主机代码: ``` #include "stm32f4xx.h" #include "stm32f4xx_i2c.h" #define SLAVE_ADDRESS 0xA0 #define BUFFER_SIZE 4 uint8_t txBuffer[BUFFER_SIZE] = {0x01, 0x02, 0x03, 0x04}; uint8_t rxBuffer[BUFFER_SIZE]; int main(void) { // 初始化I2C1 I2C_InitTypeDef I2C_InitStruct; I2C_InitStruct.I2C_ClockSpeed = 100000; I2C_InitStruct.I2C_Mode = I2C_Mode_I2C; I2C_InitStruct.I2C_DutyCycle = I2C_DutyCycle_2; I2C_InitStruct.I2C_OwnAddress1 = 0x00; I2C_InitStruct.I2C_Ack = I2C_Ack_Enable; I2C_InitStruct.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit; I2C_Init(I2C1, &I2C_InitStruct); // 使能I2C1和中断 I2C_Cmd(I2C1, ENABLE); NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel = I2C1_EV_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); // 发送启动信号,开始主机模式 I2C_GenerateSTART(I2C1, ENABLE); while (1) { // 主机模式下发送数据给从机 if (I2C_GetFlagStatus(I2C1, I2C_FLAG_TXE)) { for (int i = 0; i < BUFFER_SIZE; i++) { I2C_SendData(I2C1, txBuffer[i]); while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED)); } } } } // 主机模式下的中断处理函数 void I2C1_EV_IRQHandler(void) { if (I2C_GetITStatus(I2C1, I2C_IT_AF)) { I2C_ClearFlag(I2C1, I2C_FLAG_AF); // 清除标志位,终止传输 I2C_GenerateSTOP(I2C1, ENABLE); // 生成停止信号 while(I2C_GetFlagStatus(I2C1, I2C_FLAG_STOPF)); // 等待停止信号完成 } } ``` 从机代码: ``` #include "stm32f4xx.h" #include "stm32f4xx_i2c.h" #define SLAVE_ADDRESS 0xA0 #define BUFFER_SIZE 4 uint8_t txBuffer[BUFFER_SIZE] = {0x01, 0x02, 0x03, 0x04}; uint8_t rxBuffer[BUFFER_SIZE]; int main(void) { // 初始化I2C1 I2C_InitTypeDef I2C_InitStruct; I2C_InitStruct.I2C_ClockSpeed = 100000; I2C_InitStruct.I2C_Mode = I2C_Mode_I2C; I2C_InitStruct.I2C_DutyCycle = I2C_DutyCycle_2; I2C_InitStruct.I2C_OwnAddress1 = SLAVE_ADDRESS; I2C_InitStruct.I2C_Ack = I2C_Ack_Enable; I2C_InitStruct.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit; I2C_Init(I2C1, &I2C_InitStruct); // 使能I2C1和中断 I2C_Cmd(I2C1, ENABLE); NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel = I2C1_EV_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); // 等待接收主机的启动信号 while (!I2C_GetFlagStatus(I2C1, I2C_FLAG_ADDR)); I2C_ClearFlag(I2C1, I2C_FLAG_ADDR); // 清除标志位 I2C_AcknowledgeConfig(I2C1, ENABLE); I2C_GenerateACK(I2C1, ENABLE); while (1) { // 接收从机模式下的数据 if (I2C_GetFlagStatus(I2C1, I2C_FLAG_RXNE)) { for (int i = 0; i < BUFFER_SIZE; i++) { rxBuffer[i] = I2C_ReceiveData(I2C1); } } } } // 从机模式下的中断处理函数 void I2C1_EV_IRQHandler(void) { if (I2C_GetITStatus(I2C1, I2C_IT_AF)) { I2C1->SR1; // 读SR1寄存器 I2C_ClearFlag(I2C1, I2C_FLAG_AF); // 清除标志位 } } ``` 以上是一个简单的STM32 I2C主从通信的示例代码。主机发送一组数据给从机,从机接收并存储在接收缓冲区中。 ### 回答2: STM32的IIC接口可以实现主从模式的通信。在主模式下,主设备负责发起通信,而从设备负责接收主设备的指令并执行,主设备可以与多个从设备进行通信。在从模式下,从设备等待主设备的指令并执行,从设备只能与一个主设备通信。 在使用STM32的IIC接口进行主从模式通信的代码中,需要先进行IIC的初始化配置。在主模式下,主设备需要配置自己的IIC引脚、时钟、传输速率等参数,并发送起始信号、器件地址、数据等指令,通过IIC总线与从设备进行通信。在从模式下,从设备需要配置自己的IIC引脚、时钟、从设备地址等参数,并等待主设备的指令,接收主设备发送的数据并执行相应的操作。 以下是一个简单的示例代码片段,展示了在STM32中使用IIC进行主从模式通信的基本步骤: 主设备代码片段: ```c #include "stm32f4xx.h" #include "stm32f4xx_i2c.h" void I2C_Master_Config(void) { // 初始化I2C对应的GPIO //配置I2C时钟、速率、地址等参数 //发送起始信号 //发送器件地址和数据等指令 } void I2C_Master_Transmit(uint8_t data) { //发送数据给从设备 } void I2C_Master_Receive(void) { //接收从设备发送的数据 } int main(void) { //初始化其他相关硬件 I2C_Master_Config(); while (1) { //发送数据给从设备 I2C_Master_Transmit(data); //接收从设备发送的数据 I2C_Master_Receive(); //执行其他操作 } } ``` 从设备代码片段: ```c #include "stm32f4xx.h" #include "stm32f4xx_i2c.h" void I2C_Slave_Config(void) { // 初始化I2C对应的GPIO //配置I2C从设备地址等参数 //等待主设备的指令 } void I2C_Slave_Receive(void) { //接收主设备发送的数据 } void I2C_Slave_Transmit(void) { //发送数据给主设备 } int main(void) { //初始化其他相关硬件 I2C_Slave_Config(); while (1) { //接收主设备发送的数据 I2C_Slave_Receive(); //发送数据给主设备 I2C_Slave_Transmit(); //执行其他操作 } } ``` 这只是一个简单的示例,实际使用时还需要根据具体的硬件和需求进行相应的配置和处理。 ### 回答3: STM32是一款广泛使用的微控制器系列,其中包含了多个系列和型号。IIC(Inter-Integrated Circuit)是一种串行通信协议,也被称为I2C(Inter-IC)总线。在STM32中,可以通过编写相应的代码来实现IIC总线的主从模式。 在主模式下,STM32作为主设备通过IIC总线与其他从设备通信。为了实现主从代码,需要进行以下几个步骤: 首先,在STM32的引脚配置中,选择IIC总线使用的引脚,并设置为复用功能。通过配置GPIO的模式和速度,将引脚配置为I2C模式。 其次,在主模式下,需要初始化IIC总线的时钟频率和寄存器等参数。通过配置相关的寄存器,设置IIC总线的时钟速度和工作模式。 然后,在主模式中,通过编写代码来实现主设备与从设备之间的通信。具体的通信过程涉及到发送数据、接收数据、启动和停止条件等。通过相关的函数调用,主设备可以发送数据给从设备,并接收来自从设备的响应数据。 最后,在主设备的主循环中,可以通过轮询或中断的方式实时检测和处理来自从设备的数据,完成主从通信的功能。 总的来说,要实现STM32的IIC主从模式,需要配置相应的引脚和寄存器,并编写相应的代码来实现主设备和从设备之间的通信。

相关推荐

最新推荐

recommend-type

基于stm32+FreeRTOS+ESP8266的实时天气系统

【作品名称】:基于stm32+FreeRTOS+ESP8266的实时天气系统 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:项目简介 基于stm32F407+FreeRTOS+ESP8266的实时气象站系统,通过物联网技术实时读取天气情况,温度以及自带了一个计时功能。 所需设备 stm32F407,淘晶驰串口屏,ESP8266; 串口屏连接串口3,ESP8266连接串口2,串口1用于打印状态。 实现过程 通过对ESP8266发送AT指令,从服务器读取天气的json数据,然后通过cJSON解码数据,最后FreeRTOS对任务进行管理(FreeRTOS和cJSON有冲突,需要将cJSON申请内存空间的函数替换成FreeRTOS申请内存的函数,每次解码后,一定要释放内存,否则解码会卡死,而且需要把Heap_size设置稍微大一点,推荐设置为4096)
recommend-type

地县级城市建设2022-2002 公厕数 公厕数-三类以上公厕数 市容环卫专用车辆设备总数 省份 城市.xlsx

数据含省份、行政区划级别(细分省级、地级市、县级市)两个变量,便于多个角度的筛选与应用 数据年度:2002-2022 数据范围:全693个地级市、县级市、直辖市城市,含各省级的汇总tongji数据 数据文件包原始数据(由于多年度指标不同存在缺失值)、线性插值、回归填补三个版本,提供您参考使用。 其中,回归填补无缺失值。 填补说明: 线性插值。利用数据的线性趋势,对各年份中间的缺失部分进行填充,得到线性插值版数据,这也是学者最常用的插值方式。 回归填补。基于ARIMA模型,利用同一地区的时间序列数据,对缺失值进行预测填补。 包含的主要城市: 通州 石家庄 藁城 鹿泉 辛集 晋州 新乐 唐山 开平 遵化 迁安 秦皇岛 邯郸 武安 邢台 南宫 沙河 保定 涿州 定州 安国 高碑店 张家口 承德 沧州 泊头 任丘 黄骅 河间 廊坊 霸州 三河 衡水 冀州 深州 太原 古交 大同 阳泉 长治 潞城 晋城 高平 朔州 晋中 介休 运城 永济 .... 等693个地级市、县级市,含省级汇总 主要指标:
recommend-type

Xposed Framework 是一种为 Android 系统设计的软件框架,它可以实现对 Android 系统的各种修改

Xposed Framework 主要特点: 模块化定制:Xposed 框架允许用户安装各种模块,这些模块可以修改系统和应用程序的行为,添加新功能,或者改进现有功能。 不需要刷机:与传统的修改 Android 系统需要刷机不同,Xposed Framework 只需要在已经 root 过的设备上安装 Xposed 框架,然后即可通过安装模块来实现对系统的定制。 易于管理:Xposed 框架提供了一个用户友好的管理界面,用户可以很容易地查看已安装的模块、启用或禁用模块,并进行相关设置。 灵活性:由于 Xposed 框架的模块化设计,用户可以根据个人喜好选择安装不同的模块,从而实现个性化的定制。 使用 Xposed Framework 需要注意的事项: Root 权限:安装 Xposed Framework 需要设备拥有 Root 权限,因此这可能会导致设备保修失效,同时需要谨慎操作,以避免对系统造成损害。 模块安全:Xposed 框架的模块是由第三方开发者开发的,因此需要注意模块的来源和安全性,避免安装恶意模块导致系统问题。 系统稳定性:一些 Xposed 模块可能会影响系统
recommend-type

YOLOv10算法直升机机场-停机坪标志检测+数据集

yolov10算法直升机机场-停机坪标志检测训练权重, 包含直升机机场-停机坪标志检测数据集,数据集目录已经配置好,划分好 train,val, test,并附有data.yaml文件,yolov5、yolov7、yolov8,yolov9等算法可以直接进行训练模型,txt格式标签, 数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 数据集配置目录结构data.yaml: nc: 1 names: - helipad
recommend-type

pillow_create_sample.py

pillow_create_sample.py
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。